Results

Looking for more? ProQuest® Dissertations & Theses has additional dissertations and theses.
10576 open access dissertations and theses found for:
if(Reaction-diffusion equations)  »   Refine Search
1.
Identification of Coefficients in Reaction-Diffusion Equations
by Yu, Weiming, Ph.D.  University of Cincinnati. 2004: 93 pages; 10857158.
2.
Long Time Behavior for Reaction-Diffusion Population Models
by Wu, Yixiang, Ph.D.  University of Louisiana at Lafayette. 2015: 76 pages; 10002390.
3.
Numerical Study of Reaction-Diffusion Systems using Front Tracking
by Joglekar, Saurabh Gajanan, Ph.D.  State University of New York at Stony Brook. 2017: 107 pages; 10622549.
4.
Analysis of a reaction-diffusion system with local and nonlocal diffusion terms
by Tatum, Richard D., Ph.D.  George Mason University. 2010: 229 pages; 3421722.
6.
Dynamics of Predator-Prey Models with Ratio-Dependent Functional Response and Diffusion
by Cervantes Casiano, Ricardo, M.S.  University of South Dakota. 2016: 96 pages; 10131446.
7.
Predicting the Spatio-Temporal Evolution of Tumor Growth and Treatment Response in a Murine Model of Glioma
by Hormuth, David Andrew, II., Ph.D.  Vanderbilt University. 2016: 213 pages; 13835072.
8.
The Choreography of Yeast Mating: Modelling Intercellular Communication, Cell Polarity and Morphogenesis
by Giese, Wolfgang, Ph.D.  Humboldt Universitaet zu Berlin (Germany). 2016: 177 pages; 10730715.
9.
Imaging and Control of Surface Reactions
by Sanchez Bodega, Pablo, Ph.D.  Technische Universitaet Berlin (Germany). 2008: 163 pages; 27609892.
10.
On the stability of periodic solutions of nonlinear dispersive equations
by Johnson, Mathew A., Ph.D.  University of Illinois at Urbana-Champaign. 2009: 187 pages; 3363132.
12.
Dynamics and spatiotemporal variability of ice streams
by Sayag, Roiy, Ph.D.  Harvard University. 2009: 171 pages; 3385547.
13.
Infinitesimal time scale calculus
by Cuchta, Tom, M.A.  Marshall University. 2011: 93 pages; 1492019.
14.
Fast physics-based simulation of vascular surgery
by Jichuan, Wu, Ph.D.  National University of Singapore (Singapore). 2015: 177 pages; 10006103.
15.
Simulation methods for spatiotemporal models of biochemical signaling networks
by Strychalski, Wanda, Ph.D.  The University of North Carolina at Chapel Hill. 2009: 116 pages; 3366478.
17.
Symmetries of wave equations of statistical optics
by Mitofsky, Andrea M., Ph.D.  University of Illinois at Urbana-Champaign. 2008: 166 pages; 3337877.
18.
Generation of acid mine drainage: Reactive transport models incorporating geochemical and microbial kinetics
by Andre, Benjamin J., Ph.D.  University of Colorado at Boulder. 2009: 242 pages; 3354557.
19.
Unboundedness results for rational difference equations
by Lugo, Gabriel, Ph.D.  University of Rhode Island. 2013: 76 pages; 3557097.
20.
Working correlation selection in generalized estimating equations
by Jang, Mi Jin, Ph.D.  The University of Iowa. 2011: 258 pages; 3494048.
21.
Potential Theory Methods for Some Nonlinear Elliptic Equations
by Seesanea, Adisak, Ph.D.  University of Missouri - Columbia. 2018: 88 pages; 13877169.
22.
23.
Long time behavior of some nonlinear dispersive equations
by Deng, Yu, Ph.D.  Princeton University. 2015: 157 pages; 3712251.
24.
A New Control Paradigm for Stochastic Differential Equations
by Schmid, Matthias J. A., Ph.D.  State University of New York at Buffalo. 2017: 310 pages; 10285670.
25.
Some Regularity Properties for Two Equations Arising from Flows
by Chen, Eric Christopher, Ph.D.  Princeton University. 2019: 124 pages; 13885976.
26.
Chern-simons equations arising in a quantum hall effect
by Medina, Luciano, Ph.D.  Polytechnic Institute of New York University. 2014: 96 pages; 3629550.
27.
Analysis of Sequential Caputo Fractional Differential Equations with Applications
by Sambandham, Bhuvaneswari, Ph.D.  University of Louisiana at Lafayette. 2016: 97 pages; 10163318.
28.
Some Results on the Euler Equations for Incompressible Flow
by Elgindi, Tarek Mohamed, Ph.D.  New York University. 2014: 293 pages; 3635128.
29.
Lattice-Boltzmann Models for High-Order Partial Differential Equations
by Otomo, Hiroshi, Ph.D.  Tufts University. 2019: 124 pages; 13814332.
30.
Uniqueness Properties in the Theory of Stochastic Differential Equations
by Gomez Henao, Alejandro, Ph.D.  University of Rochester. 2013: 56 pages; 3555025.
1 - 30 of 10576 displayed.
  1    2    3    4    5    6    7    8    9    10    11   Next >
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest