COMING SOON! PQDT Open is getting a new home!

ProQuest Open Access Dissertations & Theses will remain freely available as part of a new and enhanced search experience at www.proquest.com.

Questions? Please refer to this FAQ.

Results

Looking for more? ProQuest® Dissertations & Theses has additional dissertations and theses.
4830 open access dissertations and theses found for:
if(Macdonald polynomials)  »   Refine Search
1.
A combinatorial approach to the q; t-symmetry in Macdonald polynomials
by Gillespie, Maria Monks, Ph.D.  University of California, Berkeley. 2016: 94 pages; 10150833.
3.
Alcove models for Hall-Littlewood polynomials and affine crystals
by Lubovsky, Arthur, Ph.D.  State University of New York at Albany. 2013: 66 pages; 3594475.
4.
Random Harmonic Polynomials
by Thomack, Andrew, Ph.D.  Florida Atlantic University. 2017: 84 pages; 10681500.
5.
Factorization of polynomials modulo a prime
by Pham, Autumn Thu, M.S.  California State University, Long Beach. 2012: 59 pages; 1517761.
6.
Value sets of polynomials modulo a prime
by Eldanaf, Diaa S., M.S.  California State University, Long Beach. 2011: 56 pages; 1499153.
7.
Chapman-Enskog solutions to arbitrary order in sonine polynomials
by Tipton, Earl Lynn, Ph.D.  University of Missouri - Columbia. 2008: 264 pages; 3484569.
8.
Orthogonal Polynomials and Mathematical Surface Descriptions in Freeform Optical Design
by Takaki, Nick, Ph.D.  University of Rochester. 2021: 160 pages; 28317279.
9.
On special values of hyperelliptic division polynomials and a formula of Eisenstein
by Wittenborn, Erika F., Ph.D.  University of Colorado at Boulder. 2010: 115 pages; 3419549.
11.
Invariants of knots, graphs, and Feynman diagrams
by Luse, Kerry M., Ph.D.  The George Washington University. 2008: 89 pages; 3315293.
12.
Minimax Bounds for Estimation of Normal Location Mixtures
by Kim, Kyoung Hee, Ph.D.  Yale University. 2012: 88 pages; 3525199.
14.
The Generalized External Order, and Applications to Zonotopal Algebra
by Gillespie, Bryan R., Ph.D.  University of California, Berkeley. 2018: 110 pages; 10829226.
15.
A Hodge-theoretic Study of Augmentation Varieties Associated to Legendrian Knots/Tangles
by Su, Tao, Ph.D.  University of California, Berkeley. 2018: 78 pages; 10824535.
16.
Adaptive, Dynamic Surface / Wavefront Metrology and Analysis
by Aftab, Maham, Ph.D.  The University of Arizona. 2019: 144 pages; 13878217.
17.
Roots of Polynomial Congruences
by Welsh, Matthew C, Ph.D.  Rutgers The State University of New Jersey, School of Graduate Studies. 2019: 89 pages; 13856719.
18.
On the generalized Ince equation
by Moussa, Ridha, Ph.D.  The University of Wisconsin - Milwaukee. 2014: 195 pages; 3636427.
19.
On efficient computation of Grobner bases
by Gash, Justin M., Ph.D.  Indiana University. 2008: 206 pages; 3330795.
20.
On Calculating the Cardinality of the Value Set of a Polynomial (and some related problems)
by Hill, Joshua Erin, Ph.D.  University of California, Irvine. 2014: 107 pages; 3646731.
21.
Characterizing Classes of Quadrilaterals and Hexagons
by Darch, Melissa, M.S.  Southern Illinois University at Edwardsville. 2018: 48 pages; 10793876.
22.
Polynomial representations and associated cycles for indefinite unitary groups
by Housley, Matthew, Ph.D.  The University of Utah. 2011: 75 pages; 3461625.
23.
Spectral abscissa optimization using polynomial stability conditions
by Cross, Jonathan A., Ph.D.  University of Washington. 2010: 201 pages; 3406832.
24.
Extremal sextic truncated moment problems
by Yoo, Seonguk, Ph.D.  The University of Iowa. 2010: 149 pages; 3461430.
25.
Gröbner basis algorithms
by Dellaca, Roger D., M.S.  California State University, Long Beach. 2009: 130 pages; 1466198.
26.
Spectra of Multiplication Operators as a Numerical Tool
by Vioreanu, Bogdan, Ph.D.  Yale University. 2012: 89 pages; 3525285.
27.
An explication of the Hilbert basis theorem and its relation to school mathematics
by Tse, Jasmine, M.S.  California State University, Long Beach. 2009: 66 pages; 1466156.
29.
Affine Stanley symmetric functions for classical groups
by Pon, Steven A., Ph.D.  University of California, Davis. 2010: 104 pages; 3427426.
30.
Refining Multivariate Value Set Bounds
by Smith, Luke Alexander, Ph.D.  University of California, Irvine. 2015: 43 pages; 3709756.
1 - 30 of 4830 displayed.
  1    2    3    4    5    6    7    8    9    10    11   Next >
Copyright © 2021 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest