Dissertation/Thesis Abstract

Working correlation selection in generalized estimating equations
by Jang, Mi Jin, Ph.D., The University of Iowa, 2011, 258; 3494048
Abstract (Summary)

Longitudinal data analysis is common in biomedical research area. Generalized estimating equations (GEE) approach is widely used for longitudinal marginal models. The GEE method is known to provide consistent regression parameter estimates regardless of the choice of working correlation structure, provided [special characters omitted] consistent nuisance parameters are used. However, it is important to use the appropriate working correlation structure in small samples, since it improves the statistical efficiency of [special characters omitted]. Several working correlation selection criteria have been proposed (Rotnitzky and Jewell, 1990; Pan, 2001; Hin and Wang, 2009; Shults et al, 2009). However, these selection criteria have the same limitation in that they perform poorly when over-parameterized structures are considered as candidates.

In this dissertation, new working correlation selection criteria are developed based on generalized eigenvalues. A set of generalized eigenvalues is used to measure the disparity between the bias-corrected sandwich variance estimator under the hypothesized working correlation matrix and the model-based variance estimator under a working independence assumption. A summary measure based on the set of the generalized eigenvalues provides an indication of the disparity between the true correlation structure and the misspecified working correlation structure. Motivated by the test statistics in MANOVA, three working correlation selection criteria are proposed: PT (Pillai's trace type criterion),WR (Wilks' ratio type criterion) and RMR (Roy's Maximum Root type criterion). The relationship between these generalized eigenvalues and the CIC measure is revealed.

In addition, this dissertation proposes a method to penalize for the over-parameterized working correlation structures. The over-parameterized structure converges to the true correlation structure, using extra parameters. Thus, the true correlation structure and the over-parameterized structure tend to provide similar côv([special characters omitted]), and similar working correlation selection criterion values. However, the over-parameterized structure is more likely to be chosen as the best working correlation structure by “the smaller the better” rule for criterion values. This is because the over-parameterization leads to the negatively biased sandwich variance estimator, hence smaller selection criterion value. In this dissertation, the over-parameterized structure is penalized through cluster detection and an optimization function. In order to find the group (“cluster”) of the working correlation structures that are similar to each other, a cluster detection method is developed, based on spacings of the order statistics of the selection criterion measures. Once a cluster is found, the optimization function considering the trade-off between bias and variability provides the choice of the “best” approximating working correlation structure.

The performance of our proposed criterion measures relative to other relevant criteria (QIC, RJ and CIC) is examined in a series of simulation studies.

Indexing (document details)
Advisor: Pendergast, Jane F.
Commitee: Cavanaugh, Joseph E., Lang, Joseph B., Oleson, Jacob J., Smith, Brian J.
School: The University of Iowa
Department: Biostatistics
School Location: United States -- Iowa
Source: DAI-B 73/05, Dissertation Abstracts International
Subjects: Biostatistics, Applied Mathematics, Statistics
Keywords: Generalized eigenvalue, Generalized estimating equations, Longitudinal data, Model selection, Penalization, Working correlation structure
Publication Number: 3494048
ISBN: 9781267152343