Dissertation/Thesis Abstract

A novel switched reluctance motor based propulsion drive for electric and plug-in hybrid electric vehicles
by Bilgin, Berker, Ph.D., Illinois Institute of Technology, 2011, 235; 3486310
Abstract (Summary)

Hybrid and Plug-in hybrid electric vehicles (HEVs and PHEVs) have received increasing attention from the automotive industry over the recent years. They are typically more efficient and they produce lower emissions than similar ICE-based vehicles, which significantly reduces their negative impact on the environment. In this study, design considerations of two fundamental parts of plug-in vehicles, traction motor and battery charger circuit, have been investigated toward the drivetrain applications in a solar assisted plug-in electric auto rickshaw.

Switched reluctance motors (SRM) have been seen as potential candidates for propulsion systems over the last few years. They are robust, capable of performance in harsh operating conditions and have a wide speed range. Conventional SRM configurations have a higher number of stator poles than rotor poles. This PhD. dissertation presents the advantages of a novel SRM configuration with the number of rotor poles greater than number of stator poles and investigates the challenges in its design. Practical design considerations have been proposed and by using them a 3 phase 5 hp 6/10 SRM is designed, constructed and tested.

A PHEV is a series or parallel hybrid electric vehicle equipped with a high energy density battery to extend the mileage and get better fuel efficiency. Since the capacity of the battery is higher than the sum of the energy that can be supplied by the internal combustion engine and regained from the regenerative braking, external charging from the grid is necessary. This research also investigates the requirements of the battery charger circuit and proposes low cost topology composed of a PWM boost rectifier cascaded with a bidirectional DC/DC converter. Operation of the circuit has been analyzed by deriving its mathematical model. Feedback controller requirements to control the input and output current and DC bus voltage have been studied. Critical issues to be considered in parameter selection of the voltage and current controller are explained in terms of universal input operation. In order to verify the analysis presented, an experimental hardware setup has been built and tested.

Indexing (document details)
Advisor: Krishnamurthy, Mahesh
School: Illinois Institute of Technology
School Location: United States -- Illinois
Source: DAI-B 73/02, Dissertation Abstracts International
Subjects: Electrical engineering
Keywords: Hybrid electric vehicles, Propulsion drives, Switched reluctance motors
Publication Number: 3486310
ISBN: 978-1-267-03963-7
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy