Dissertation/Thesis Abstract

Experimental Investigations of Thermal Transport in Carbon Nanotubes, Graphene and Nanoscale Point Contacts
by Pettes, Michael Thompson, Ph.D., The University of Texas at Austin, 2011, 163; 3484428
Abstract (Summary)

As silicon-based transistor technology continues to scale ever downward, anticipation of the fundamental limitations of ultimately-scaled devices has driven research into alternative device technologies as well as new materials for interconnects and packaging. Additionally, as power dissipation becomes an increasingly important challenge in highly miniaturized devices, both the implementation and verification of high mobility, high thermal conductivity materials, such as low dimensional carbon nanomaterials, and the experimental investigation of heat transfer in the nanoscale regime are requisite to continued progress.

This work furthers the current understanding of structure-property relationships in low dimensional carbon nanomaterials, specifically carbon nanotubes (CNTs) and graphene, through use of combined thermal conductance and transmission electron microscopy (TEM) measurements on the same individual nanomaterials suspended between two micro-resistance thermometers. Through the development of a method to measure thermal contact resistance, the intrinsic thermal conductivity, κ, of multi-walled (MW) CNTs is found to correlate with TEM observed defect density, linking phonon-defect scattering to the low κ in these chemical vapor deposition (CVD) synthesized nanomaterials. For single- (S) and double- (D) walled (W) CNTs, the κ is found to be limited by thermal contact resistance for the as-grown samples but still four times higher than that for bulk Si. Additionally, through the use of a combined thermal transport-TEM study, the κ of bi-layer graphene is correlated with both crystal structure and surface conditions. Theoretical modeling of the κ temperature dependence allows for the determination that phonon scattering mechanisms in suspended bi-layer graphene with a thin polymeric coating are similar to those for the case of graphene supported on SiO2.

Furthermore, a method is developed to investigate heat transfer through a nanoscale point contact formed between a sharp silicon tip and a silicon substrate in an ultra high vacuum (UHV) atomic force microscope (AFM). A contact mechanics model of the interface, combined with a heat transport model considering solid-solid conduction and near-field thermal radiation leads to the conclusion that the thermal resistance of the nanoscale point contact is dominated by solid-solid conduction.

Indexing (document details)
Advisor: Shi, Li
Commitee:
School: The University of Texas at Austin
School Location: United States -- Texas
Source: DAI-B 73/02, Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Mechanical engineering, Nanoscience, Materials science
Keywords: Carbon nanotubes, Graphene, Nano point contacts, Thermal conductivity
Publication Number: 3484428
ISBN: 9781267002273
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest