COMING SOON! PQDT Open is getting a new home!

ProQuest Open Access Dissertations & Theses will remain freely available as part of a new and enhanced search experience at

Questions? Please refer to this FAQ.

Dissertation/Thesis Abstract

Semi-Autonomous Small Unmanned Aircraft Systems for Sampling Tornadic Supercell Thunderstorms
by Elston, Jack S., Ph.D., University of Colorado at Boulder, 2011, 293; 3453706
Abstract (Summary)

This work describes the development of a network-centric unmanned aircraft system (UAS) for in situ sampling of supercell thunderstorms. UAS have been identified as a well-suited platform for meteorological observations given their portability, endurance, and ability to mitigate atmospheric disturbances. They represent a unique tool for performing targeted sampling in regions of a supercell thunderstorm previously unreachable through other methods.

Doppler radar can provide unique measurements of the wind field in and around supercell thunderstorms. In order to exploit this capability, a planner was developed that can optimize ingress trajectories for severe storm penetration. The resulting trajectories were examined to determine the feasibility of such a mission, and to optimize ingress in terms of flight time and exposure to precipitation.

A network-centric architecture was developed to handle the large amount of distributed data produced during a storm sampling mission. Creation of this architecture was performed through a bottom-up design approach which reflects and enhances the interplay between networked communication and autonomous aircraft operation. The advantages of the approach are demonstrated through several field and hardware-in-the-loop experiments containing different hardware, networking protocols, and objectives.

Results are provided from field experiments involving the resulting network-centric architecture. An airmass boundary was sampled in the Collaborative Colorado Nebraska Unmanned Aircraft Experiment (CoCoNUE). Utilizing lessons learned from CoCoNUE, a new concept of operations (CONOPS) and UAS were developed to perform in situ sampling of supercell thunderstorms. Deployment during the Verification of the Origins of Rotation in Tornadoes Experiment 2 (VORTEX2) resulted in the first ever sampling of the airmass associated with the rear flank downdraft of a tornadic supercell thunderstorm by a UAS.

Hardware-in-the-loop simulation capability was added to the UAS to enable further assessment of the system and CONOPS. The simulation combines a full six degree-of-freedom aircraft dynamic model with wind and precipitation data from simulations of severe convective storms. Interfaces were written to involve as much of the system's field hardware as possible, including the creation of a simulated radar product server. A variety of simulations were conducted to evaluate different aspects of the CONOPS used for the 2010 VORTEX2 field campaign.

Indexing (document details)
Advisor: Frew, Eric W.
Commitee: Argrow, Brian M., Brown, Timothy, Houston, Adam, Lawrence, Dale
School: University of Colorado at Boulder
Department: Aerospace Engineering
School Location: United States -- Colorado
Source: DAI-B 72/07, Dissertation Abstracts International
Subjects: Aerospace engineering, Meteorology
Keywords: Supercell thunderstorms, Tornados, Unmanned aircraft
Publication Number: 3453706
ISBN: 978-1-124-62060-2
Copyright © 2021 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy