Dissertation/Thesis Abstract

Provisioning computational resources using virtual machines and leases
by Sotomayor Basilio, Borja, Ph.D., The University of Chicago, 2010, 198; 3419776
Abstract (Summary)

The need for computational resources has, over the years, become a fundamental requirement in both science and industry. In many cases, this need is transient: a user may only require computational resources for the duration of a well-defined task. For example, a scientist could require a large number of computers to run a simulation for just a few hours, but might not need those computers at any specific time (as long as they are made available in a reasonable amount of time). A college instructor may want to make a cluster of computers available to students during the course's lab sessions, at very specific times during the week, and with a specific software configuration. A telecommunications company could possess an existing infrastructure that hosts a number of websites, but may need to supplement that infrastructure with additional resources during periods of unforeseen increased web traffic, meaning those resources have to made available right away with very little advance notice.

These transient resource usage scenarios pose the problem of how to provision shared computational resources efficiently. This problem has been studied for decades, resulting in approaches that tend to be highly specialized to specific usage scenarios. For example, the problem of how to run multiple jobs on a shared cluster has been extensively studied, resulting in job management systems systems like Torque/Maui, Sun Grid Engine, LoadLeveler, and many others, that can queue and prioritize job requests efficiently (in these systems, efficiency is defined in terms of a variety of metrics, including waiting times and resource utilization). Such a system would meet the requirements of the scientist wanting to run simulations during a few hours but, on the other hand, the college instructor and the telecommunications company mentioned above would be ill-served by a job management system and the efficiency metrics typically used in job management. Conversely, other resource provisioning approaches are not particularly well suited for job-oriented computations.

Thus, there is no general solution that can provision resources meeting the requirements of different usage scenarios simultaneously, such as those mentioned above, reconciling the different measures of efficiency in each scenario. More specifically, much of my work is motivated by the combination of best-effort resource requirements, where a user needs computational resources but is willing to wait for them (possibly setting a deadline), and advance reservation resource requirements, where the resources must be available at a specific time. In the former, efficiency is typically measured in terms of waiting times (or similar metrics such as turnaround times or slowdowns) or throughput, while the latter is usually concerned with providing the requested resources at exactly the agreed-upon times without interruption, and both are concerned with maximizing the use of hardware resources and possibly monetary profit. Although both best-effort and advance reservation provisioning have been studied separately, the combination of both is known to produce utilization problems and is discouraged in practice.

In this dissertation I develop a resource provisioning model and architecture that can support multiple resource provisioning scenarios efficiently and simultaneously, with an initial focus on the best-effort and advance-reservation cases mentioned above, and arguing in favour of a lease-based model, where leases are implemented as virtual machines (VMs). The main contributions of this dissertation are: 1. A resource provisioning model and architecture that uses leases as a fundamental abstraction and virtual machines as an implementation vehicle. 2. Lease scheduling algorithms that mitigate the utilization problems typically encountered when scheduling advance reservations. 3. A model for the various overheads involved in using virtual machines, and algorithms that (a) allow lease terms to be met even in the presence of this overhead, and (b) mitigate this overhead in some cases. 4. Price-based policies for lease admission, showing that an adaptive pricing strategy can, in some cases, generate more revenue than other baseline pricing strategies, but does xiv so by using fewer resources, thus giving resource providers more excess capacity that can potentially be sold to other users.

As a technological contribution, I also present Haizea (http://haizea.cs.uchicago.edu/), an open source reference implementation of the architecture and algorithms described in this dissertation.

Indexing (document details)
Advisor: Foster, Ian T.
Commitee: Martin Llorente, Ignacio, Rogers, Anne M.
School: The University of Chicago
Department: Computer Science
School Location: United States -- Illinois
Source: DAI-B 71/10, Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Computer science
Keywords: Computational resources, Distributed systems, Resource management, Scheduling, Virtual machines
Publication Number: 3419776
ISBN: 9781124199184
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest