Dissertation/Thesis Abstract

Equation of state of silicate liquids
by Jing, Zhicheng, Ph.D., Yale University, 2010, 191; 3415354
Abstract (Summary)

Equation of state of silicate liquids is crucial to our understanding of melting processes such as the generation and differentiation of silicate melts in Earth and hence to explore the geophysical and geochemical consequences of melting. A comparison of compressional properties reveals fundamental differences in compressional mechanisms between silicate liquids and solids. Due to a liquid's ability to change structures, the compression of liquids is largely controlled by the entropic contribution to the free energy in addition to the internal energy contribution that is available to solids. In order to account for the entropic contribution, a new equation of state of silicate liquids is proposed based on the theory of hard-sphere mixtures. The equation of state is calibrated for SiO2-Al 2O3-FeO-MgO-CaO liquids and other systems. The new equation of state provides a unified explanation for the experimental observations on compressional properties of liquids including the bulk moduli of silicate liquids as well as the pressure dependence of Grüneisen parameter.

The effect of chemical composition on melt density can be studied by the equation of state. Results show that FeO and H2O are the most important components in melts that control the melt density at high pressure due to their very different mean atomic masses from other melt components. Adding SiO2 can make a melt more compressible at high pressure due to its continuous change of coordination from 4-fold to 6-fold.

The effect of 1-120 on melt density is further investigated by high-pressure experiments at the conditions of 9 to 15 GPa (corresponding to the depths of 300-500 km in the Earth) and 1900 °C to 2200 °C. The density of three dry melts and four hydrous melts with 2-7 wt% H2O was determined. Density data are analyzed by both the Birch-Mumaghan equation of state and the hard sphere equation of state. The partial molar volume of H2O is determined to be 8.8 cm3/mol at 14 GPa and 2173 K. The hypothesis that silicate melts can be gravitationally stable atop the 410 km discontinuity is tested. Results show that the conditions for density crossovers between melts and the upper mantle materials at the bottom of the upper mantle are marginally satisfied.

Indexing (document details)
Advisor: Karato, Shun-ichiro
Commitee:
School: Yale University
School Location: United States -- Connecticut
Source: DAI-B 71/07, Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Geology, Geophysics, Geochemistry
Keywords: Bulk modulus, Melt density, Silicate liquids
Publication Number: 3415354
ISBN: 9781124091679
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest