Dissertation/Thesis Abstract

Factors influencing human sound localization
by Razavi, Babak, Ph.D., University of Rochester, 2009, 281; 3381726
Abstract (Summary)

The auditory system operates in an interactive multi-sensory setting and its representation of space is influenced by physiological and environmental factors. To obtain a useful depiction of acoustic space, the brain must interpret auditory spatial cues within the context of these factors and appropriately co-register auditory space with other sensory modalities. A dependable multi-sensory map of the external world is crucial for successfully navigating through, interacting with, and surviving in the environment.

The goal of this thesis was to identify, re-evaluate, and elaborate on auditory and non-auditory factors that impact two-dimensional sound localization in humans. The influence of (1) elevation cues, (2) static eye position, and (3) sensori-motor context (pointing method) on auditory spatial processing was evaluated behaviorally. In Part 1, elevation cues, arising mainly from spectral filtering by the external ear, are shown to also impact sound localization in azimuth, which depends on interaural difference cues. Therefore, elevation cues potentially contribute to azimuth accuracy to correct errors inherent to the geometry of interaural cues.

In Part 2, evidence is put forth to demonstrate that sound localization adapts to eccentric eye position. The adaptation develops exponentially over time, reaches a maximum within -1 minute, spans two-dimensional frontal space, and is accompanied by a concurrent adaptation in perceived straight ahead. These findings help reconcile inconsistent reports on this issue in the sound localization literature, and may also have bearing on spatial adaption to vision displaced by optical prisms.

In Part 3, head (or nose) pointing under different sensori-motor contexts reveals that gaze (eye and head) is a more accurate and precise measure of target location than either head or eye position alone. This underscores the importance of quantifying perceived target location using eye in addition to head position even when subjects are specifically instructed to use head pointing.

In conclusion, this thesis demonstrates that two-dimensional sound localization is sensitive to a variety of previously unrecognized or poorly characterized physiological factors. These factors have important implications about coordination of spatial information across multiple senses, limitations in methodologies used to study sound localization, and interpretation of data reported by past studies.

Indexing (document details)
Advisor: Paige, Gary D., O'Neill, William E.
Commitee:
School: University of Rochester
School Location: United States -- New York
Source: DAI-B 70/10, Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Neurosciences, Behavioral psychology, Biomedical engineering
Keywords: Auditory systems, Eye position, Neural engineering, Sensori-motor
Publication Number: 3381726
ISBN: 978-1-109-44749-1
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest