COMING SOON! PQDT Open is getting a new home!

ProQuest Open Access Dissertations & Theses will remain freely available as part of a new and enhanced search experience at

Questions? Please refer to this FAQ.

Dissertation/Thesis Abstract

Structural characterization of intermolecular self-association in a T-cell specific tyrosine kinase
by Severin, Andrew Josef, Ph.D., Iowa State University, 2009, 166; 3355556
Abstract (Summary)

This dissertation structurally examines the intermolecular self-association and quaternary structure of interleukin-2 tyrosine kinase (Itk) and draws conclusions about its relationship to the regulation and signaling of this immunologically important protein. Found primarily in haematopoietic cells, Itk is a member of the Tec family, the second largest family of non-receptor tyrosine kinases. All Tec family members share an SH3, SH2, and catalytic kinase domain structure. The activation of Itk occurs following T-cell receptor response to antigen stimulation. The exact mechanism of regulation in Tec family kinases is unclear. However, intermolecular self-association is emerging as a common characteristic among many members of the Tec family.

To explore the potentially functionally significant self-association in Itk, high-resolution NMR solution structures were solved for the Itk SH3 domain, the Itk SH2 domain, and the Itk SH3/SH2 complex. The non-classical interaction between the Itk SH3 and SH2 domains mediates, in part, the self-association of full length Itk. The structure of the SH3/SH2 complex provides insight on how isomerization of a proline imide bond acts as an intrinsic molecular switch that preorganizes the CD loop of the SH2 domain for a non-classical interaction with the SH3 domain. Additionally, the oligomeric state of Itk self-association is characterized and the SH3/SH2 domain complex is used as a starting point to generate a structural model of the Itk SH3-SH2 fragment self-association that accounts for the oligomerization seen in native gel analysis. The same SH3/SH2 interaction is mutually exclusive with a quaternary structural rearrangement that supports autophosphorylation. Therefore, a structural model is described for Itk autophosphorylation that was generated using a previous point mutational analysis of the Itk SH2 domain coupled with covalent bond restraints found in the linkers of the SH3-SH2-kinase fragment. These studies bring us closer to understanding the structural mechanism behind Itk self-association and describe a model for one of many quaternary structural conformations in which Itk is likely to exist.

Indexing (document details)
Advisor: Andreotti, Amy H.
Commitee: Hargrove, Mark, Honzatko, Richard, Jernigan, Robert, Wu, Zhijun
School: Iowa State University
Department: Biochemistry, Biophysics, and Molecular Biology
School Location: United States -- Iowa
Source: DAI-B 70/05, Dissertation Abstracts International
Subjects: Molecular biology, Biochemistry, Biophysics
Keywords: Autophosphorylation, Oligomerization, Self-association, T cells
Publication Number: 3355556
ISBN: 978-1-109-14497-0
Copyright © 2021 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy