Dissertation/Thesis Abstract

Design and demonstration of meanderline retarders at infrared frequencies
by Tharp, Jeffrey Scott, Ph.D., University of Central Florida, 2007, 214; 3302930
Abstract (Summary)

Meanderline structures are widely used as engineered birefringent materials for waveplates and retarders at radiofrequencies, and have been previously demonstrated at frequencies up to 90 GHz in the millimeter-wave band. In this dissertation, we present results related to the modeling, fabrication, and experimental characterization of meanderlines across the range from 30 to 100 THz, in the long-wave and mid-wave infrared bands. Specific issues addressed in these new designs include spectral dispersion and angular dependence of the retardance, as well as axial ratio and throughput. The impact resulting from the infrared properties of the metals and dielectrics is explicitly included throughout. Several novel applications are identified, including integrated circular polarizers, reflective waveplates, and large-area polarization tags.

Indexing (document details)
Advisor: Boreman, Glenn D.
School: University of Central Florida
School Location: United States -- Florida
Source: DAI-B 69/02, Dissertation Abstracts International
Subjects: Electrical engineering, Optics
Keywords: Infrared frequencies, Meanderline, Phase retarders, Retarders
Publication Number: 3302930
ISBN: 978-0-549-48821-7
Copyright © 2021 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy