COMING SOON! PQDT Open is getting a new home!

ProQuest Open Access Dissertations & Theses will remain freely available as part of a new and enhanced search experience at

Questions? Please refer to this FAQ.

Dissertation/Thesis Abstract

Multiscale Fluid-Solid Interaction in Deformable Porous Media
by Fagbemi, Samuel A., Ph.D., University of Wyoming, 2020, 191; 28090976
Abstract (Summary)

The study of the interaction between rocks and residing fluids is an important field of research in hydrology, geomechanics, and energy resources. Geomechanical systems undergo deformation due to gravitational loading and plate tectonic activities. Deformation could also occur due to changes in pore pressure resulting from fluid injection and production. Such natural and human-controlled events tend to alter the hydro-mechanical equilibrium depending on the morphology, stress history, and fluids present. The in-situ characterization and description of such complex interactions is hence a non-trivial task demanding the interlinking of different physical phenomena.

In this dissertation, therefore, we present a fluid-solid interaction (FSI) problem for a porous medium which undergoes finite deformation at the pore-scale. The upscaled response for such a system is consistent with the non-linear Biot theory. We then apply the FSI model for examining the role of microstructure and effective stress in permeability alteration. Furthermore, we introduce a framework for studying the interaction between multiphase flow and solids coupled with adhesion effects where the role of surface tension forces in deformation is investigated. The results indicate the deformation for Berea sandstone saturated with a two-phase fluid is minuscule and depends primarily on the elastocapillary length of the medium. Furthermore, uniaxial and triaxial stresses were applied normal to the surface of the solid skeleton during drainage and imbibition events, and for all cases, a reduction in relative permeability of oil was observed, implying stress conditions did not produce a positive shift in the relative permeability of oil.

Supplemental Files

Some files may require a special program or browser plug-in. More Information

Indexing (document details)
Advisor: Tahmasebi, Pejman, Piri, Mohammad
Commitee: Fan, Maohang, Saraji, Soheil, Ng, Kam, Furtado, Frederico
School: University of Wyoming
Department: Chemical & Petroleum Engineering
School Location: United States -- Wyoming
Source: DAI-B 82/4(E), Dissertation Abstracts International
Subjects: Petroleum engineering, Engineering, Hydrologic sciences, Petrology, Plate Tectonics
Keywords: Fluid-solid interaction, Hydro-mechanical deformation, Multiphase flow, Multiphase fluid-solid interaction, Multiphysics, Volume of fluid
Publication Number: 28090976
ISBN: 9798678179937
Copyright © 2021 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy