Dissertation/Thesis Abstract

Application of Design of Experiments for Well Pattern Optimization in Umiat Oil Field: A Natural Petroleum Reserve of Alaska Case Study
by Gurav, Yojana Shivaji, M.S., University of Alaska Fairbanks, 2020, 109; 27957791
Abstract (Summary)

Umiat field, located in Alaska North Slope poses unique development challenges because of its remote location and permafrost within the reservoir. This hinders the field development, and further leads to a potential low expected oil recovery despite latest estimates of oil in-place volume of 1550 million barrels. The objective of this work is to assess various possible well patterns of the Umiat field development and perform a detailed parametric study to maximize oil recovery and minimize well costs using statistical methods.

Design of Experiments (DoE) is implemented to design simulation runs for characterizing system behavior using the effect of certain critical parameters, such as well type, horizontal well length, well pattern geometry, and injection/production constraints on oil recovery. After carrying out simulation runs using a commercially available simulation software, well cost is estimated for each simulation case. Response Surface methodology (RSM) is used for optimization of well pattern parameters. The parameters, their interactions and response are modeled into a mathematical equation to maximize oil recovery and minimize well cost.

Economics plays a key role in deciding the best well pattern for any field during the field development phase. Hence, while solving the optimization problem, well costs have been incorporated in the analysis. Thus, based on the results of the study performed on selected parameters, using interdependence of the above mentioned methodologies, optimum combinations of variables for maximizing oil recovery and minimizing well cost will be obtained. Additionally, reservoir level optimization assists in providing a much needed platform for solving the integrated production optimization problem involving parameters relevant at different levels, such as reservoir, wells and field. As a result, this optimum well pattern methodology will help ensure optimum oil recovery in the otherwise economically unattractive field and can provide significant insights into developing the field more efficiently.

Computational algorithms are gaining popularity for solving optimization problems, as opposed to manual simulations. DoE is effective, simple to use and saves computational time, when compared to algorithms. Although, DoE has been used widely in the oil industry, its application in domains like well pattern optimization is novel. This research presents a case study for the application of DoE and RSM to well optimization in a real existing field, considering all possible scenarios and variables. As a result, increase in estimated oil recovery is achieved within economical constraints through well pattern optimization.

Indexing (document details)
Advisor: Dandekar, Abhijit, Patil, Shirish
Commitee: Khataniar, Santanu, Clough, James, Patwardhan, Samarth
School: University of Alaska Fairbanks
Department: Petroleum Engineering
School Location: United States -- Alaska
Source: MAI 81/12(E), Masters Abstracts International
Subjects: Petroleum engineering
Keywords: Design of experiments, Petroleum engineering, Recovery optimization, Reservoir engineering, Reservoir simulation, Well pattern optimization
Publication Number: 27957791
ISBN: 9798645476939
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy