Dissertation/Thesis Abstract

Linking the Active Zone Ultrastructure to Function in Drosophila
by Ehmann, Nadine, Ph.D., Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany), 2015, 112; 27766703
Abstract (Summary)

Kommunikation zwischen Nervenzellen ist von grundlegender Bedeutung für die Hirnfunktion. An chemischen Synapsen findet diese an hoch spezialisierten interzellulären Kontaktstellen statt, den aktiven Zonen, welche die Voraussetzung für präzise Neurotransmission schaffen und somit die synaptische Kommunikation gewährleisten.

In aktiven Zonen befindet sich eine Vielzahl von Proteinen dicht gepackt, die Geschwindigkeit, Genauigkeit und Plastizität der Signaltransduktion vermitteln. Bisher ist es jedoch unklar, in welcher Weise die molekularen Organisationsprinzipien dieser Proteine die Funktion der aktiven Zone beeinflussen. Teilweise ist dies dem Auflösungsvermögen konventioneller Lichtmikroskopie geschuldet, das nicht ausreicht um die Architektur der aktiven Zone im Nanometer Bereich aufzuklären. Unlängst jedoch haben neue Methoden der hochaufgelösten Fluoreszenzmikroskopie ihren Weg in die Neurowissenschaften gefunden. Diese sind in der Lage die Lücke zwischen optischer Lichtmikroskopie und Elektronenmikroskopie zu schließen, ohne die Identität der Proteinspezies aus den Augen zu verlieren. Besonderes Interesse kommt hierbei sogenannten Lokalisationsmikroskopie Techniken zu. Diese können neben der Darstellung molekularer Organisationen im Idealfall sogar quantitative Informationen über die absolute Anzahl bestimmter Moleküle in subzellulären Bereichen liefern.

In der vorliegenden Arbeit wurde eine Methode entwickelt, die auf klassischer Immunohistochemie beruht und dSTORM (direct stochastic optical reconstruction microscopy) nutzt, um die endogene Proteinorganisation in situ zu quantifizieren. Fokussierend auf Brp (Bruchpilot), einem Protein an der aktiven Zone von Drosophila melanogaster, zeigen die Ergebnisse, dass die Zytomatrix an der aktiven Zone modular aufgebaut ist, wobei jedes Modul ~137 Brp Moleküle umfasst. Diese sind zum Großteil in etwa 15 Gruppen mit je 7 Untereinheiten angeordnet. Um auf einen quantitativen Zusammenhang zwischen der Ultrastruktur der aktiven Zone und ihrer Funktion zu schließen, wurden Drosophila Mutanten eingesetzt und mittels Elektrophysiologie funktionell untersucht. Die Ergebnisse veranschaulichen, dass sich spezifische Eigenschaften von Kurzzeitplastizität in der präzisen Anordnung von Brp widerspiegeln, was Rückschlüsse auf verschiedene Ursprünge synaptischer Depression zulässt. Darüber hinaus beschrieben dSTORM Experimente erstmals, dass ein funktioneller Gradient entlang des Motoneurons mit der graduellen Veränderung der Anzahl von Bruchpilotmolekülen pro aktive Zone korreliert.

Indexing (document details)
Advisor: Kittel , Robert , Buchner , Erich , Rössler , Wolfgang , Hünig , Thomas
Commitee:
School: Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany)
School Location: Germany
Source: DAI-C 81/7(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Neurosciences
Keywords: Active zones
Publication Number: 27766703
ISBN: 9781392751398
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest