Dissertation/Thesis Abstract

Pikosekunden-zeitaufgelöste Photoionisation: 2-Methylallyl-Radikal und Pyracen
by Herterich, Jörg-Viktor, Ph.D., Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany), 2014, 198; 27766762
Abstract (Summary)

This dissertation examines five different molecules with respect to their geometries in the ground and excited states and their dynamics after electronic excitation. The focus is on pi-conjugated systems, bridged (paracyclophane derivatives) or Extended (pyracen) by an additional aliphatic moiety. Paracyclophanes are suitable models to study the interaction between pi-systems, in particular the through space coupling. Moreover, this work focuses on the excited-state dynamics of the B-state of 2-methylallyl (2MA) by time-resolved photoionization with a ps-laser. Research on resonantly stabilized small radicals such as allyl or methylallyl is not only conducted because of a fundamental interest in reaction dynamics, but also because such radicals can accumulate in a reactive environment and are observed in combustion. Studies on isolated radicals yield information on their reactions, which are important in kinetic modeling of combustion processes. For example, biodiesel often contains molecules with C=C double bonds (e.g. fatty acid esters). Abstraction of H-atoms leads to alkylated allyl radicals, because the C-H bonds at the allylic sites are particularly weak. Due to their instability, such small hydrocarbon radicals are not easy to handle and their spectroscopic measurement is always a challenge. An innovation in my research was the development of a high-temperature gas cell to transfer the molecules into the gas phase and to record IR-spectra (compatible with an FT-IR spectrometer), obtaining experimental information on the most stable conformer in the electronic ground state.

Indexing (document details)
Advisor: Fischer , Ingo
Commitee:
School: Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany)
School Location: Germany
Source: DAI-C 81/7(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Molecular physics
Keywords: Electronic excitation
Publication Number: 27766762
ISBN: 9781392403839
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest