Dissertation/Thesis Abstract

On the Control through Leadership of Multi-Agent Systems
by Wongkaew, Suttida, Ph.D., Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany), 2015, 140; 27766701
Abstract (Summary)

Die Untersuchung von interagierende Multiagent-Modellen ist ein neues mathematisches Forschungsfeld, das sich mit dem Gruppenverhalten von Tieren beziehungsweise Sozialverhalten von Menschen. Eine interessante Eigenschaft der Multiagentensysteme ist kollektives Verhalten. Eine der herausfordernden Themen, die sich mit diesen dynamischen Modellen befassen, ist in der mathematischen Sicht eine Entwicklung der Regelungsmechanismen, die die Zeitevolution dieser Systemen beeinflussen können.

In der Doktorarbeit fokussieren wir uns hauptsächlich auf die Studie von Problemen der Steuerbarkeit, Stabilität und optimalen Regelung für Multiagentensysteme anhand drei Modellen wie folgt: Das erste ist die Hegselmann- Krause opinion formation Modell. Die HK-Dynamik beschreibt die Änderung der Meinungen von einzelnen Personen aufgrund der Interaktionen mit den Anderen. Die Studie dieses Model fokussiert auf bestimmte Regelungen, um die Meinungen der Agenten zu betreiben, damit eine gewünschte Zustimmung erreicht wird. Das zweite Model ist das Heider social balance (HB) Modell. Die HB-Dynamik beschreibt die Evolution von Beziehungen in einem sozialen Netzwerk. Ein Ziel der Untersuchung dieses Systems ist die Konstruktion der Regelungsfunktion um die Beziehungen zu steuern, damit eine Freundschaft erreicht wird. Das dritte Modell ist ein Schar-Modell, das in biologischen Systemen beobachteten kollektive Bewegung beschreibt. Das Schar-Model unter Berücksichtigung beinhaltet Selbstantrieb, Friktion, Attraktion Repulsion und Anpassungsfähigkeiten. Wir untersuchen einen Regler für die Steuerung des Schar-Systems, um eine gewünschte Trajektorie zu verfolgen. Üblich wie alle dieser Systeme soll laut unsere Strategie ein Hauptagent, der sich mit alle anderen Mitgliedern des Systems interagieren, hinzugefügt werden und das Regelungsmechanismus inkludiert werden.

Unserer Regelung anhand dem Vorgehen mit Führungsverhalten ist unter Verwendung von klassischen theoretischen Regelungsmethode und ein Schema der modellpr ädiktiven Regelung entwickelt. Zur Ausführung der genannten Methode wird für jedes Modell die Stabilität der korrespondierenden Linearsystem in der Nähe von Konsensus untersucht. Ferner wird die lokale Regelbarkeit geprüft. Nur in dem Hegselmann-Krause opinion formation Modell. Der Regler wird so bestimmt, dass die Meinungen der Agenten gesteuert werden können. Dadurch konvergiert es global zu eine gewünschten Zustimmung. Die MPC-Vorgehensweise ist eine optimale Regelung Strategie, die auf numerische Optimierung basiert. Zu Verwendung des MPC-Shema werden die optimalen Regelungsproblemen für jedes Modell formuliert, wo sich die objektive Funktionen in Abhängigkeit von den gewünschten objective des Problems unterscheidet. Die erforderliche Optimalitätsbedingungen erster Ordnung für jedes Problem sind präsentiert. Auÿerdem für die numerische Prozess, eine Sequenz von offenen diskreten Optimalitätssystemen ist nach dem expliziten Runge-Kutta Schema gelöst. In dem Optimierungsverfahren ist ein nicht linear konjugierter Gradientlöser umgesetzt. Schlieÿlich sind numerische Experimenten in der Lage, die Eigenschaften der Multiagent-Modellen zu untersuchen und die Fähigkeiten der gezielten Regelstrategie zu beweisen. Die Strategie nutzt zu betreiben Multiagentensysteme, um einen gewünschten Konsensus zu erreichen und eine gegebene Trajektorie zu verfolgen.

Indexing (document details)
Advisor: Borzi , Alfio
Commitee:
School: Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany)
School Location: Germany
Source: DAI-C 81/7(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Mathematics
Keywords: Multi-agent models
Publication Number: 27766701
ISBN: 9781392726099
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest