Dissertation/Thesis Abstract

Flexible Energy Resources for Enhancing Power Distribution System Resilience
by Yang, Zijiang, M.S., The George Washington University, 2019, 114; 13882754
Abstract (Summary)

In the past decades, high-impact low-probability (HILP) events are observed more and more frequent. While such severe HILP events cause prolonged and extensive electric outages, the conventional reliability view is insufficient to coping with the challenges on the modern power system. Improving the resilience of the power system, hence, becomes increasingly important and urgent. The use of advanced technologies including the remotecontrolled switches and distributed energy sources bring additional flexibility to the power system operation when the emergency conditions or the outages caused by HILP events unfold. Mobile power sources (MPSs) including truck-mounted mobile emergency generators, truck-mounted mobile energy storage systems, and electric vehicles have a great potential in harnessing their mobility for enhancing the power system resilience.

This thesis mainly focuses on investigating the potential roles of the MPS in improving the power system resilience, specifically, facilitating the distribution system restoration following natural hazards. The distribution system reconfiguration (real-time topology change) is also taken into account to best utilize the network built-in flexibility and help power delivery during emergencies. A mixed-integer nonlinear programming model is proposed for deriving a strategy for MPS dispatch and distribution system reconfiguration under a given repair strategy. The model is further linearized into a mix-integer linear programming formulation. The coordination of the proposed MPS and photovoltaic (PV) generation is also investigated. Eventually, the impact of the repair strategy on the contribution of MPS dispatch and PV generation on promoting distribution system restoration is studied.

Indexing (document details)
Advisor: Dehghanian, Payman
Commitee: Ahmadi, Shahrokh, Harrington, Robert
School: The George Washington University
Department: Electrical Engineering
School Location: United States -- District of Columbia
Source: MAI 58/05M(E), Masters Abstracts International
Subjects: Engineering, Electrical engineering
Keywords: Distribution system resilience, Distribution system restoration, High-impact low-probability (HILP) events, Mobile power sources, Photovoltaic (PV) generation, Repair strategy
Publication Number: 13882754
ISBN: 978-1-392-16070-1
Copyright © 2021 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy