Dissertation/Thesis Abstract

Development and Application of Computational Tools for RNA-Seq Based Transcriptome Annotations
by Yu, Sung-Huan, Ph.D., Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany), 2019, 162; 13867996
Abstract (Summary)

Exakte Genomannotationen sind essentiell für das Verständnis Genexpressionsregulation in verschiedenen Organismen. In den letzten Jahren entwickelte sich RNA-Seq zu einer äußerst wirksamen Methode, um solche Genomannotationen zu erstellen und zu verbessern. Allerdings ist das Erstellen von Genomannotationen bei manueller Durchführung noch immer ein zeitaufwändiger und inkonsistenter Prozess. Die Verwendung von RNA-Seq-Daten begünstigt besonders die Identifizierung von nichtkodierenden RNAs, was allerdings arbeitsintensiv ist und fundiertes Expertenwissen erfordert. Ein Teil meiner Promotion bestand aus der Entwicklung eines modularen Tools namens ANNOgesic, das basierend auf RNA-Seq-Daten in der Lage ist, eine Vielzahl von Genombestandteilen, einschließlich nicht-kodierender RNAs, automatisch und präzise zu ermitteln. Das Hauptaugenmerk lag dabei auf der Anwendbarkeit für bakterielle und archaeale Genome. Die Software führt eine Vielzahl von Analysen durch und stellt die verschiedenen Ergebnisse grafisch dar. Sie generiert hochpräzise Annotationen, die nicht unter Verwendung herkömmlicher Annotations-Tools auf Basis von Genomsequenzen erzeugt werden könnten. Es kann eine Vielzahl neuer Genombestandteile, wie kleine nicht-kodierende RNAs in UTRs, ermitteln, welche von bisherigen Programme nicht vorhergesagt werden können. ANNOgesic ist unter einer Open-Source-Lizenz (ISCL) auf https://github.com/Sung-Huan/ANNOgesic verfügbar.

Meine Forschungsarbeit beinhaltet nicht nur die Entwicklung von ANNOgesic, sondern auch dessen Anwendung um das Transkriptom des Staphylococcus aureus-Stamms HG003 zu annotieren. Dieser ist einem Derivat von S. aureus NCTC8325 - ein Stamm, Dear ein bedeutendes Modell in der Infektionsbiologie darstellt. Zum Beispiel wurde er für die Untersuchung von Antibiotikaresistenzen genutzt, da er anfällig für alle bekannten Antibiotika ist. Der Elternstamm NCTC8325 besitzt zwei Mutationen im regulatorischen Genen (rsbU und tcaR), die Veränderungen der Virulenz zur Folge haben und die in Stamm HG003 auf die Wildtypsequenz zurückmutiert wurden. Dadurch besitzt S. aureus HG003 das vollständige, ursprüngliche Regulationsnetzwerk und stellt deshalb ein besseres Modell zur Untersuchung von sowohl Virulenz als auch Antibiotikaresistenz dar. Trotz seines Modellcharakters fehlten für HG003 bisher eine

vollständige Genomsequenz und deren Annotationen. Um diese Lücke zu schließen habe ich als Teil meiner Promotion mit Hilfe von ANNOgesic Annotationen für diesen Stamm, einschließlich sRNAs und ihrer Funktionen, generiert. Dafür habe ich Differential RNA-Seq-Daten von 14 verschiedenen Proben (zwei Mediumsbedingungen mit sieben Zeitpunkten) sowie RNA-Seq-Daten, die von fragmentierten Transkripten generiert wurden, analysiert. Neben S. aureus HG003 wurde ANNOgesic auf eine Vielzahl von Bakterien- und Archaeengenome angewendet und dabei wurde eine hohe

Performanz demonstriert. Zusammenfassend kann gesagt werden, dass ANNOgesic ein mächtiges bioinformatisches Werkzeug für die RNA-Seq-basierte Annotationen ist und für verschiedene Spezies erfolgreich angewandt wurde.

Indexing (document details)
Advisor: Vogel , Jörg , Dandekar , Thomas , Sharma , Cynthia
Commitee:
School: Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany)
School Location: Germany
Source: DAI-C 81/1(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Bioengineering
Keywords: RNA-Seq
Publication Number: 13867996
ISBN: 9781392872109
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest