Dissertation/Thesis Abstract

Engineered Esophageal Regeneration
by Aho, Johnathon Michael Edward, Ph.D., College of Medicine - Mayo Clinic, 2017, 181; 10281823
Abstract (Summary)

The esophagus is critical for passage of oral bolus into the gastrointestinal tract. Diseases of the esophagus, such as malignancy, can necessitate resection of esophageal tissue. To maintain esophageal continuity with the remainder of the gastrointestinal tract, reconstruction is mandatory. Current reconstructive options are morbid and involve autologous conduits such as stomach, small bowel, or colon. An alternative tissue engineered conduit that facilitates esophageal regrowth to reduce the need for these morbid reconstructions would have significant clinical utility. Several critical challenges must be addressed in order to make these conduits a clinical reality. First, scaffolds should be designed to ideally mimic mechanical behavior of the native esophagus. To accomplish this, a non-destructive method to mechanically assess these constructs benchmarked to native esophagi is necessary before and after implantation. Second, scaffolds should be both biocompatible and mechanically stable in vitro; this would allow selection of desirable candidates for subsequent in vivo testing. Finally, in vivo testing of the esophageal conduit requires development of an analogous large animal model to human disease. In vivo large animal model testing is required as proof of concept for esophageal regeneration as a critical step toward future human use.3

Indexing (document details)
Advisor: Tschumperlin, Daniel J., Wigle, Dennis
Commitee: Mantilla, Carlos B., Prakash, Y.S., Urban, Matthew W.
School: College of Medicine - Mayo Clinic
Department: Biomedical Engineering
School Location: United States -- Minnesota
Source: DAI-B 80/05(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Biomedical engineering, Biomechanics, Physiology
Keywords: Biomechanics, Esophagus, Mesenchymal stem cells, Sonometry, Surgery, Tissue engineering
Publication Number: 10281823
ISBN: 9780438796140
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest