Dissertation/Thesis Abstract

SLC7A10 als Neues Gen für Humane Hyperekplexie
by Drehmann, Paul, Ph.D., Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany), 2018, 86; 10990370
Abstract (Summary)

Recent studies have shown that Asc-1 knock-out mice leads to reduced intracellular glycine concentration in synaptic boutons in the brain followed by a development of a hyperekplexia-like phenotype. In humans, the underlying cause for hyperekplexia is not complexly understood. Based on findings in the Asc-1 knockout mouse model, a patient cohort of 51 patients was used to identify possible sequence alterations in the corresponding Gen SLC7A10 as a novel candidate gene for human hyperekplexia.

For this purpose, genomic DNA was extracted from blood samples of patients suffering from hyperekplexia to identify mutations within functionally important areas of the gene by means of PCR and subsequent analyses of the determined sequences. Besides other sequence alterations mainly in introns, the coding mutation G307R within exon 7 was identified and used to investigate functional consequences of this amino acid exchange in an experimental series. The clone ACS-1 G307R was transfected into HEK293 cells to assess the activity of the transporter via biotinylation, immunocytochemical stainings, and functional uptake assays. Our results showed an almost loss of function with more than 95 % reduction in the transport activity although surface expression was unaffected. In conclusion, the ASC-1 mutation was confirmed as a novel cause for human hyperekplexia. In addition, mental retardation and restricted neuronal plasticity might play a role during disease manifestation.

Indexing (document details)
Advisor: Villmann, Carmen, Wischmeyer, Erhard
Commitee:
School: Bayerische Julius-Maximilians-Universitaet Wuerzburg (Germany)
School Location: Germany
Source: DAI-C 81/1(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Neurosciences
Keywords: Hyperekplexia
Publication Number: 10990370
ISBN: 9781392500811
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest