With PQDT Open, you can read the full text of open access dissertations and theses free of charge.
About PQDT Open
Search
The wireless network design problem (WNDP) considers how best to place a set of antennas so the antennas can send and receive the maximum possible amount of data subject to network-performance constraints (e.g., channel-availability constraints). To date, little research has considered how to choose the network-antenna layout that maximizes throughput under these conditions. Also, past research has mainly investigated networks with omnidirectional antennas only, not other types of antennas. A bi-level mixed-integer program is constructed to solve this problem using a cutting-plane approach. The data produced from this model demonstrate an extension of the WNDP under more realistic conditions than have been simulated previously. The questions answered by this research are as follows: (1) what are the effects on network throughput of utilizing directional or sectored antennas instead of omnidirectional antennas, and (2) what is the maximum possible throughput when imposing constraints related to differing interference types and channel availability?
Advisor: | Medal, Hugh R. |
Commitee: | Marufuzzaman, Mohammad, Young, Maxwell |
School: | Mississippi State University |
Department: | Industrial and Systems Engineering |
School Location: | United States -- Mississippi |
Source: | MAI 58/01M(E), Masters Abstracts International |
Source Type: | DISSERTATION |
Subjects: | Operations research |
Keywords: | Directional antennas, Sectored antennas, Wireless network |
Publication Number: | 10843378 |
ISBN: | 978-0-438-31454-2 |