Dissertation/Thesis Abstract

Establishing a Single-Cell and High-Throughput Phenotypical Platform to Identify Novel Arrhythmia-Causing Genes
by Yu, Michael Shenghan, Ph.D., University of California, San Diego, 2018, 119; 10791348
Abstract (Summary)

Here we describe an original phenotypical platform to identify novel regulators of cardiac rhythm and arrhythmia-causing genes in hPSC-derived atrial-like cardiomyocytes (hPSC-ACM).The system applies well-characterized atrial subtype cardiomyocytes generated from Id1-induced cardiogenic mesoderm progenitors. The platform integrates automated high-throughput/high-content kinetic imaging system with fluorescence quantification and single-cell resolution trace analysis algorithm to retrieve physiological metrics of hPSC-ACMs biology. This generic platform enables the high-throughput phenotypical evaluation of functional genomics and small molecules on cardiac physiological parameters in both healthy or disease contexts. The system is also functionally validated with genes previously associated with atrial fibrillation (AF) and confirmed the occurrence of arrhythmia-like activity in hPSC-ACMs induced by siRNA-mediated knockdown of the genes along with AF-associated perturbagens. We then modeled and categorized different arrhythmia-subtypes arise from distinct molecular events. Overall, the hPSC-ACM differentiation protocol provides a robust resource to study atrial-specific cardiac diseases and development; the platform and single-cell analysis generate higher resolutions of information without sacrificing the throughout; and the modeling and characterization of arrhythmia-like activity shed light upon this unique approach to identify novel regulators of cardiac rhythm and arrhythmia-causing genes in an atrial-specific manner.

Indexing (document details)
Advisor: McCulloch, Andrew D.
Commitee: Colas, Alexandre R., Engler, Adam J., Evans, Sylvia M., Fraley, Stephanie I., Mercola, Mark K., Varghese, Shyni
School: University of California, San Diego
Department: Bioengineering
School Location: United States -- California
Source: DAI-B 79/12(E), Dissertation Abstracts International
Subjects: Bioengineering
Keywords: Arrythmia, Atrial fibrillation, Cardiovascular disease, High-throughput, Phenotypical, Single-cell
Publication Number: 10791348
ISBN: 978-0-438-16770-4
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy