Dissertation/Thesis Abstract

Learning Neural Representations that Support Efficient Reinforcement Learning
by Stachenfeld, Kimberly, Ph.D., Princeton University, 2018, 155; 10824319
Abstract (Summary)

RL has been transformative for neuroscience by providing a normative anchor for interpreting neural and behavioral data. End-to-end RL methods have scored impressive victories with minimal compromises in autonomy, hand-engineering, and generality. The cost of this minimalism in practice is that model-free RL methods are slow to learn and generalize poorly. Humans and animals exhibit substantially improved flexibility and generalize learned information rapidly to new environment by learning invariants of the environment and features of the environment that support fast learning rapid transfer in new environments. An important question for both neuroscience and machine learning is what kind of ``representational objectives'' encourage humans and other animals to encode structure about the world. This can be formalized as ``representation feature learning,'' in which the animal or agent learns to form representations with information potentially relevant to the downstream RL process. We will overview different representational objectives that have received attention in neuroscience and in machine learning. The focus of this overview will be to first highlight conditions under which these seemingly unrelated objectives are actually mathematically equivalent. We will use this to motivate a breakdown of properties of different learned representations that are meaningfully different and can be used to inform contrasting hypotheses for neuroscience. We then use this perspective to motivate our model of the hippocampus. A cognitive map has long been the dominant metaphor for hippocampal function, embracing the idea that place cells encode a geometric representation of space. However, evidence for predictive coding, reward sensitivity, and policy dependence in place cells suggests that the representation is not purely spatial. We approach the problem of understanding hippocampal representations from a reinforcement learning perspective, focusing on what kind of spatial representation is most useful for maximizing future reward. We show that the answer takes the form of a predictive representation. This representation captures many aspects of place cell responses that fall outside the traditional view of a cognitive map. We go on to argue that entorhinal grid cells encode a low-dimensional basis set for the predictive representation, useful for suppressing noise in predictions and extracting multiscale structure for hierarchical planning.

Indexing (document details)
Advisor: Botvinick, Matthew M.
Commitee: Daw, Nathaniel, Gershman, Samuel J., Norman, Kenneth A., Pillow, Jonathan
School: Princeton University
Department: Neuroscience
School Location: United States -- New Jersey
Source: DAI-B 79/10(E), Dissertation Abstracts International
Subjects: Neurosciences, Quantitative psychology, Cognitive psychology
Keywords: Grid cell, Hippocampus, Place cell, Reinforcement learning, Representation learning
Publication Number: 10824319
ISBN: 978-0-438-05041-9
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy