Dissertation/Thesis Abstract

Canonical Surfaces and Hypersurfaces in in Abelian Varieties
by Cesarano, Luca, Ph.D., Universitaet Bayreuth (Germany), 2018, 92; 10870161
Abstract (Summary)

Die vorliegende Arbeit beschäftigt sich mit der kanonischen Abbildung der glatten kompakten komplexen Flächen vom allgemeinen Typ, die eine Polarisierung von Typ (1, 2, 2) auf einer abelschen Dreifaltigkeit induzieren. Eine erste unserer Forschungsarbeit zugrundeliegende Motivation liegt in dem hinlänglich bekannten Existenzproblem von eingebetteten kanonischen Flächen im PN mit vorgegebenen numerischen Invarianten: Fragestellung 0.1. Für welche natürliche Zahlen n existiert eine glatte kanonische Fläche S im P5, so dass KS^2 = n gilt? Ein anderer Aspekt, welcher dem Haupthema dieser Arbeit zusätzliches Interesse verleiht, lässt sich durch folgende Fragestellung formulieren: Fragestellung 0.2. Sei (A, L) eine allgemeine g-dimensionale polarisierte abelsche Varietät, und sei (d1 , · · · ,dg ) der Typ der von L induzierten Polarisierung auf A. Für welche Polarisierungstypen (d1 , · · · dg ) liefert das kanonische System |ωD| eines allgemeinen glatten Divisors D in |L| eine holomorphe Einbettung? Ziel der Arbeit ist, sowohl eine geometrische kontextabhängige Beschreibung der kanonischen Abbildung einer glatten Fläche S vom Typ (1,2,2) in einer 3-dimensionalen abelschen Variet ̈at A zu liefern, als auch durch den Satz 3.5.6 einen Beweis dafür zu erbringen, dass die kanonische Abbildung eine holomorphe Einbettung ist, vorausgesetzt dass A und S allgemein genug angenommen werden. Daraus folgt ein Existenzbeweis von kanonischen irregulären Flächen im P5 mit numerischen Invarianten pg = 6, q = 3 und K 2 = 24. Diese Arbeit ist wie folgt gegliedert: Zunächst befasst sich das erste Kapitel miden theoretischen Grundlagen der ampeln Divisoren auf abelschen Varietäten und deren kanonischer Abbildung, die sich analytisch durch Theta-Funktionen darstellen lässt (Satz 1.1.1). In diesem Zusammenhang ist der Fall einer Fl ̈achin einer (1, 1, 2)-polarisierten 3-dimensionalen abelschen Variet ̈at, welcher in [14] untersucht wird, von besonderer Bedeutung. Dabei wird das Verhalten der kanonischen Abbildung des Rückzugs durch eine Isogenie vom Grad 2 einer Prinzipalpolarisierung beschrieben, indem das jeweilige kanonische Modelund dessen definierende projektive Gleichungen durch homologische Methoden untersucht werden. Im letzten Abschnitt werden sowohl diese Ergebnisse, alauch der Zusammenhang mit der analytischen Darstellung der kanonischen Abbildung genau beleuchtet. Die Polarisierungstypen (1, 2, 2) und (1, 1, 4) lassen sich nicht durch die numerischen Invarianten der ampeln Flächen in dem jeweiligen Linearsystem unterscheiden. Im zweiten Kapitel werden unverzweigte Z22-Uberlagerungen einer glatten nicht-hyperelliptischen Kurve von Geschlecht 3 untersucht. Diese Analyse ermöglicht eine Charakterisierung jener assoziierten jacobischen Überlagerungen, die (1, 2, 2)-polarisierte 3-dimensionale abelsche Varietäten sind. Eine rein analytische, vom Kontext der Geometrie unabhängige Anwendung der bereits genannten Darstellung der kanonischen Abbildung (1.1.1) hat sich allerdings in allen untersuchten Fällen als unmöglich erwiesen, mit Ausnahmen von jenen Fällen, in denen die (1, 2, 2)-polarisierte 3-Mannigfaltigkeit A ein Etales Quotient von einem Produkt einer (2, 2)-polarisierten abelschen Fläche mit einer (2)-polarisierten elliptischen Kurve ist. In diesen Fällen wird das Verhalten der kanonischen Abbildung in den letzten Abschnitten des dritten Kapitels dargestellt. Diese Analyse leistet einen wichtigen Beitrag für den Beweis des oben zitierten Satzes 3.5.6. Abschließend bleibt anzumerken, dass nach unserer Einsch ̈atzung die hier vorgeführten Methoden keine Anwendung im Fall einer Polarisierung von Typ (1, 1, 4) finden. Unter Verwendung der in 0.2 eingeführten Notationen, wobei A und S allgemein genug sind, lässt sich aus der Analyse einer Polarisierung vom Typ (1, 1, 2) in diesem Fall entnehmen, dass die kanonische Abbildung birational ist. In Anbetracht derselben Fragestellung bleiben viele interessante Fälle offen, und daher sind unsere gelieferten Resultate keinesfalls als endgültig aufzufassen. Aus diesem Grund hoffen wir, dass sie zukünftige Arbeiten in diesem Forschurgsbereich anregen können.

Indexing (document details)
Advisor:
Commitee:
School: Universitaet Bayreuth (Germany)
School Location: Germany
Source: DAI-C 81/1(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Mathematics
Keywords: Canonical maps
Publication Number: 10870161
ISBN: 9781088398173
Copyright © 2020 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest