Dissertation/Thesis Abstract

An Approach for Testing the Extract-Transform-Load Process in Data Warehouse Systems
by Homayouni, Hajar, M.S., Colorado State University, 2018, 97; 10689298
Abstract (Summary)

Enterprises use data warehouses to accumulate data from multiple sources for data analysis and research. Since organizational decisions are often made based on the data stored in a data warehouse, all its components must be rigorously tested. In this thesis, we first present a comprehensive survey of data warehouse testing approaches, and then develop and evaluate an automated testing approach for validating the Extract-Transform-Load (ETL) process, which is a common activity in data warehousing.

In the survey we present a classification framework that categorizes the testing and evaluation activities applied to the different components of data warehouses. These approaches include both dynamic analysis as well as static evaluation and manual inspections. The classification framework uses information related to what is tested in terms of the data warehouse component that is validated, and how it is tested in terms of various types of testing and evaluation approaches. We discuss the specific challenges and open problems for each component and propose research directions.

The ETL process involves extracting data from source databases, transforming it into a form suitable for research and analysis, and loading it into a data warehouse. ETL processes can use complex one-to-one, many-to-one, and many-to-many transformations involving sources and targets that use different schemas, databases, and technologies. Since faulty implementations in any of the ETL steps can result in incorrect information in the target data warehouse, ETL processes must be thoroughly validated. In this thesis, we propose automated balancing tests that check for discrepancies between the data in the source databases and that in the target warehouse. Balancing tests ensure that the data obtained from the source databases is not lost or incorrectly modified by the ETL process. First, we categorize and define a set of properties to be checked in balancing tests. We identify various types of discrepancies that may exist between the source and the target data, and formalize three categories of properties, namely, completeness, consistency, and syntactic validity that must be checked during testing. Next, we automatically identify source-to-target mappings from ETL transformation rules provided in the specifications. We identify one-to-one, many-to-one, and many-to-many mappings for tables, records, and attributes involved in the ETL transformations. We automatically generate test assertions to verify the properties for balancing tests. We use the source-to-target mappings to automatically generate assertions corresponding to each property. The assertions compare the data in the target data warehouse with the corresponding data in the sources to verify the properties.

We evaluate our approach on a health data warehouse that uses data sources with different data models running on different platforms. We demonstrate that our approach can find previously undetected real faults in the ETL implementation. We also provide an automatic mutation testing approach to evaluate the fault finding ability of our balancing tests. Using mutation analysis, we demonstrated that our auto-generated assertions can detect faults in the data inside the target data warehouse when faulty ETL scripts execute on mock source data.

Indexing (document details)
Advisor: Ghosh, Sudipto, Ray, Indrakshi
Commitee: Bieman, James M., Vijayasarathy, Leo R.
School: Colorado State University
Department: Computer Science
School Location: United States -- Colorado
Source: MAI 57/06M(E), Masters Abstracts International
Source Type: DISSERTATION
Subjects: Computer science
Keywords: Data warehouse, ETL, Extract-Transform-Load, Mutation analysis, Software testing, Test assertion
Publication Number: 10689298
ISBN: 9780438039803
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest