COMING SOON! PQDT Open is getting a new home!

ProQuest Open Access Dissertations & Theses will remain freely available as part of a new and enhanced search experience at

Questions? Please refer to this FAQ.

Dissertation/Thesis Abstract

Public Participation in Plant-pollinator Conservation: Key Assessment Areas That Support Networked Restoration and Monitoring
by Battle, Kerissa, Ph.D., Portland State University, 2018, 236; 10748711
Abstract (Summary)

Environmental problems are growing at a pace and scale that traditional research methods alone can no longer tackle. Innovative research models that utilize contributory, participatory and crowdsourcing methods are rapidly emerging to fill this gap. For these participatory efforts to be effective and sustainable, however, closer attention must be paid to key components that can promote coordinated action and sustainability. Through the lens of public participation in plant-pollinator conservation, I have, with rigorous social-ecological inquiry, offered three foundational assessment areas that can provide scientific support to this nascent field: accuracy, ecological significance and scalability.

In the first study (Chapter 2), I explored a common concern about citizen science – that a lack of foundational knowledge, or familiarity with following scientific protocols could lead to inaccurate data collection. I evaluated the accuracy of plant phenology observations collected by citizen scientist volunteers following protocols designed by the USA National Phenology Network (USA-NPN). Phenology observations made by volunteers receiving several hours of formal training were compared to those collected independently by a professional ecologist. Overall, these findings demonstrate the legitimacy of phenology observations collected by volunteers, an important finding for the increasing number of analysts relying on data collected by citizen scientists.

In Chapter 3, I explored a common concern that restoration efforts implemented by the public may not have adequate ecological value. I addressed key ecological variables to determine how small-scale patches attracted pollinators and explored which of these variables might be best to prioritize for restoration efforts suited to public initiatives. This study demonstrated that in small-scale plant restoration sites, plant diversity and resource (nectar) availability significantly affects the abundance and diversity of pollinating insects. Specifically, the treatments which contained high-resource (nectar-rich) plant species increased pollinator abundance and diversity the most. Plant diversity increased pollinator diversity and abundance only in the absence of high-resource plants. Competition for pollinators was observed in high diversity treatments but did not affect seed set for high-resource plants in any of the treatments. Together, these results suggest that managers or landowners who are restoring patches of native plants as habitat for pollinators should prioritize including species with high nectar production, and secondarily, a diverse mix of species if space and resources allow.

In Chapter 4, I explored an emergent approach to public participation in regional community science initiatives (and networks) through an exploratory case study of the New York Phenology Project. I demonstrated that local organizations have the opportunity to utilize existing data aggregation platforms to activate regional collaborative alliances to achieve what is often challenging for large–scale contributory projects. I describe our hands-on experience of conceiving and launching a regional network and outline a model that could serve as a guide for catalyzing networks. Drawing on direct experience and interviews with network partners, I developed a description of key categories related to network node success, and a linked assessment tool that could be used to evaluate network node capacity and project outcomes.

In Chapter 5, I explored an exceptional long-term, community-level phenology data set that spans New York State, USA (1802-2017), and found interesting and significant patterns of phenological change over time. The data set provides statewide phenology and temperature data that extend further back in time than any previously known data set for the region, extending to years prior to or at the beginning of recent human-caused global warming. I found that most species are flowering and leafing earlier in recent years (2009-2017) than they did in the early 19th century (1802-1861). Plants are flowering 11 days earlier and leafing 18.8 days earlier. Most of this change was driven by warming mean spring temperatures (MST) over that time; mean spring temperatures warmed by 1.0°C statewide on average between the historical and contemporary periods. Seasonality, Life Form, and the interaction between Seasonality and Life Form explained variation in phenology among species. This analysis has brought the efforts of a historical network into a modern context and has illustrated how organized long-term monitoring efforts can be valuable for ecological discovery.

This combined work provides a diverse contribution to the field of public participation in monitoring and conservation efforts. While thorough and disciplined ecological theories drive the design of the research, I simultaneously strove to help meet the ongoing demand for useable, purposeful insights into how to support public efforts to restore plant-pollinator habitats, monitor key ecological dynamics such as phenology, and scale networks capable of collecting data that address issues of global change. (Abstract shortened by ProQuest.)

Indexing (document details)
Advisor: de Rivera, Catherine E.
Commitee: Cruzan, Mitchell B., Nielsen-Pincus, Max, Rosenstiel, Todd
School: Portland State University
Department: Environmental Science
School Location: United States -- Oregon
Source: DAI-B 79/08(E), Dissertation Abstracts International
Subjects: Ecology, Climate Change, Environmental management
Keywords: Citizen science, Climate change, Phenology, Plant-pollinator conservation, Public participation, Restoration and monitoring
Publication Number: 10748711
ISBN: 978-0-355-83430-7
Copyright © 2021 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy