COMING SOON! PQDT Open is getting a new home!

ProQuest Open Access Dissertations & Theses will remain freely available as part of a new and enhanced search experience at

Questions? Please refer to this FAQ.

Dissertation/Thesis Abstract

Understanding What May Have Happened in Dynamic, Partially Observable Environments
by Molineaux, Matthew, Ph.D., George Mason University, 2017, 173; 10618399
Abstract (Summary)

In this work, we address the problem of understanding what may have happened in a goal-based deliberative agent's environment after the occurrence of exogenous actions and events. Such an agent observes, periodically, information about the state of the world, but this information is incomplete, and reasons for state changes are not observed. We propose methods a goal-based agent can use to construct internal, causal explanations of its observations based on a model of its environment. These explanations comprise a series of inferred actions and events that have occurred and continue to occur in its world, as well as assumptions about the initial state of the world. We show that an agent can more accurately predict future events and states by reference to these explanations, and thereby more reliably achieve its goals. This dissertation presents the following novel contributions: (1) a formalization of the problems of achieving goals, understanding what has happened, and updating an agent's model in a partially observable, dynamic world with partially known dynamics; (2) a complete agent (DHAGENT) that achieves goals in such environments more reliably than existing agents; (3) a novel algorithm (DISCOVERHISTORY) and technique (DISCOVER HISTORY search) for rapidly and accurately iteratively constructing causal explanations of what may have happened in these environments; (4) an examination of formal properties of these techniques; (5) a novel method (EML), capable of inferring improved models of an environment based on a small number of training scenarios; (6) experiments supporting performance claims about the novel methods described; and (7) an analysis of the efficiency of two DISCOVERHISTORY algorithm implementations.

Indexing (document details)
Advisor: Tecuci, Gheorghe
Commitee: Aha, David W., Boicu, Mihai, Menasce, Daniel, de Jong, Kenneth
School: George Mason University
Department: Computer Science
School Location: United States -- Virginia
Source: DAI-B 79/03(E), Dissertation Abstracts International
Subjects: Artificial intelligence, Computer science
Keywords: Autonomous agents, Deliberative action, Explanation generation, Goal achievement, Learning environment models, Partially observable environments
Publication Number: 10618399
ISBN: 978-0-355-46145-9
Copyright © 2021 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy