Dissertation/Thesis Abstract

Radiotherapy Measurements with a Deoxyribonucleic Acid Doublestrand-Break Dosimeter
by Obeidat, Mohammad Ali, Ph.D., The University of Texas Health Science Center at San Antonio, 2017, 150; 10281552
Abstract (Summary)

Many types of dosimeters are used in the clinic to measure radiation dose for therapy but none of them directly measures the biological effect of this dose. The overall purpose of this work was to develop a dosimeter that measures biological damage in the form of double-strand breaks to deoxyribonucleic acid. This dosimeter could provide a more biologically relevant measure of radiation damage than the currently utilized dosimeters. A pair of oligonucleotides was designed to fabricate this dosimeter. One is labeled with a 5’-end biotin and the other with a 5’-end 6 Fluorescein amidite (fluorescent dye excited at 495?nanometer, with a peak emission at 520 nanometer). These were designed to adhere to certain locations on the pRS316 vector and serve as the primers for polymerase chain reactions. The end product of this reaction is a 4 kilo-base pair double strands deoxyribonucleic acid fragment with biotin on one end and 6 Fluorescein amidite oligonucleotide on the other attached to streptavidin beads. The biotin end connects the double strands deoxyribonucleic acid to the streptavidin bead. These bead-connected double strands deoxyribonucleic acid were suspended in 50 microliter of phosphate-buffered saline and placed into a tube for irradiation. Following irradiation of the deoxyribonucleic acid dosimeter, we take advantage of the magnetic properties of the streptavidin bead by placing our sample microtube against a magnet. The magnetic field pulls the streptavidin beads against the side of the tube. If a double-strand-break has occurred for a double strands deoxyribonucleic acid, the fluorescein end of the double strands deoxyribonucleic acid becomes free and is no longer attached to the bead or held against the side of the microtube. The free fluorescein following a double-strand-break in double strands deoxyribonucleic acid is referred to here as supernatant. The supernatant is extracted and placed in another microtube, while the unbroken double strands deoxyribonucleic acid remain attached to the beads and stay in the microtube (Fig. 4). Those beads were re-suspended with 50 microliter of phosphate-buffered saline again (called beads), then we placed both supernatant and beads in a reader microplate and we read the fluorescence signal for both with a fluorescence reader (BioTek Synergy 2). These beads and supernatant fluorescence signals are denoted by B and S, respectively. The relative amount of supernatant fluorescence counts is proportional to the probability of a double-strand-break. The probability of double-strand-break was calculated with the following equation:

(S-BG)/(S+B-2BG) (1)

where S was the supernatant fluorescence intensity (related to the number of double strands deoxyribonucleic acid with double-strand breaks), B was the re-suspended beads fluorescence intensity (related to the number of double strands deoxyribonucleic acid without double-strand breaks), and BG was the phosphate-buffered saline fluorescence intensity (related to the background signal). There are two advantages that this type of dosimeter has over the gel separation technique. First, it is important to irradiate deoxyribonucleic acid in a solution that has similar osmolarity and ion concentrations to that in a human, such as phosphate-buffered saline. A gel dosimeter would require a transfer to gel to separate deoxyribonucleic acid, whereas our dosimeter can be separated in this solution. Currently, we use pipettes to manually perform this separation, but this step could be automated. Second, the magnetic deoxyribonucleic acid separation technique is much faster than that for gel electrophoresis. Calibration of radiotherapy equipment isn’t something that happens in national science laboratories, with only world-leading experts. This is something that happens locally at every cancer clinic, with physicists that do not have the luxury of focusing solely on this one measurement. For this reason, ease of use is critical for this type of technology. (Abstract shortened by ProQuest.)

Indexing (document details)
Advisor: Kirby, Neil A.
Commitee: Rasmussen, Karl, Shim, Eun Yong, Stathakis, Sotirios, Sudhyadhom, Atchar
School: The University of Texas Health Science Center at San Antonio
Department: Radiology
School Location: United States -- Texas
Source: DAI-B 79/02(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Molecular biology, Nuclear physics
Keywords: Medical physics, Radiation biology, Radiation dosimetry, Radiotherapy
Publication Number: 10281552
ISBN: 9780355374070
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest