Dissertation/Thesis Abstract

Wood Export and Deposition Dynamics in Mountain Watersheds
by Senter, Anne Elizabeth, Ph.D., University of California, Davis, 2017, 192; 10260979
Abstract (Summary)

Wood dynamics that store, transport, break down, and ultimately export wood pieces through watershed networks are key elements of stream complexity and ecosystem health. Efforts to quantify wood processes are advancing rapidly as technological innovations in field data collection, remotely sensed data acquisition, and data analyses become increasingly sophisticated. The ability to extend the temporal and spatial scales of wood data acquisition has been particularly useful to the investigations presented herein. The primary contributions of this dissertation are focused on two aspects of wood dynamics: watershed-scale wood export processes as identified using the depositional environment of a mountain reservoir, and wood deposition mechanisms in a bedrock-dominated mountain river. Three chapters present this work:

In Chapter 1, continuous video monitoring of wood in transport revealed seasonal and diurnal hydrologic cycle influences on the variable rates at which wood transports. This effort supports the efficacy of utilizing continuous data collection methods for wood transport studies. Annual wood export data were collected via field efforts and aerial image analyses from New Bullards Bar Reservoir on the North Yuba River, Sierra Nevada, California. Examination of data revealed linkages between decadal-scale climatic patterns, large flood events, and episodic wood export quantities. A watershed-specific relation between wood export quantities and annual peak discharge contributes to the notion that peak discharge is a primary control on wood export, and yielded prediction of annual wood export quantities where no data were available. Linkages between seasonality, climatic components, and hydrologic events that exert variable control on watershed scale wood responses are presented as a functional framework. An accompanying conceptual model supports the framework presumption that wood responses are influenced by seasonal variations in Mediterranean-montane climate conditions and accompanying hydrologic responses.

Chapter 2 contains development of new theory in support of the introduction of multiplicative coefficients, categorized by water year type, that were used to predict wood export quantities via utilization of an existing discharge-based theoretical equation. This new theory was the product of continued investigations into watershed-scale factors in search of explanation of observed variation of wood export rates into New Bullards Bar Reservoir. The gap between known variability and the attribution of wood export to one hydrologic relation continues to be a persistent issue, as the hierarchical and stochastic temporal and spatial nature of wood budget components remain difficult to quantify. The development of “watershed processes” coefficients was specifically focused on a generalized, parsimonious approach using water year type categories, with validation exercises supporting the approach. In dry years, predictions more closely represented observed wood export quantities, whereas the previously derived annual peak discharge relation yielded large over-predictions. Additional data are needed to continue development of these watershed-specific coefficients. This new approach to wood export prediction may be beneficial in regulated river systems for planning purposes, and its efficacy could be tested in other watersheds.

Chapter 3 presents the results of an investigation into wood deposition mechanisms in a 12.2 km segment of the confined, bedrock-dominated South Yuba River watershed. Inclusion of coarse wood particles in the analyses was essential in recognizing depositional patterns, thus supporting the value of utilizing a wider wood-size range. A near-census data collection effort yielded myriad data, of which topographic wetted width and bed elevation data, developed for an observed 4.5-year flood event, were standardized in 10-m intervals and then univariate and linked values were ordered into landform classifications using decision tree analyses. Digital imagery collected via kite-blimp was mosaicked into a geographic information system and all resolvable wood pieces greater then 2.5 cm in one dimension were delineated and categorized into piece count density classes. Visual imagery was also key in identifying two river corridor terrains: bedrock outcrops and cobble-boulder-vegetation patches. A conceptual model framed an investigation into how topographic variability and structural elements might influence observed wood deposition dynamics. Forage ratio test results that quantified wood piece utilization versus interval availability revealed that high-density wood deposition patterns were most significantly co-located with five discrete bedrock outcrops that dominated small portions of the river corridor in high flow conditions. Topographic variations and cobble-boulder-vegetation patches were found to be subordinate factors in wood deposition patterns. Bedrock outcrops with specific structural components were the primary depositional environments that acted as floodplain extents for coarse wood deposition, with mechanisms such as topographic steering, eddying, trapping, stranding, backwater effects, and lateral roughness features inferred to be responsible for observed wood deposition patterns.

Indexing (document details)
Advisor: Pasternack, Gregory B.
Commitee: Piegay, Herve, Ustin, Susan L.
School: University of California, Davis
Department: Hydrologic Sciences
School Location: United States -- California
Source: DAI-B 79/01(E), Dissertation Abstracts International
Subjects: Hydrologic sciences, Geomorphology, Environmental science
Keywords: Fluvial geomorphology, Reservoir management, Wood deposition, Wood export, Wood storage, Wood transport
Publication Number: 10260979
ISBN: 9780355149173
Copyright © 2018 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy