Dissertation/Thesis Abstract

The Influence of Charged Species on the Phase Behavior, Self-Assembly, and Electrochemical Performance of Block Copolymer Electrolytes
by Thelen, Jacob Lloyd, Ph.D., University of California, Berkeley, 2016, 238; 10250661
Abstract (Summary)

One of the major barriers to expanding the capacity of large-scale electrochemical energy storage within batteries is the threat of a catastrophic failure. Catastrophic battery pack failure can be initiated by a defect within a single battery cell. If the failure of a defective battery cell is not contained, the damage can spread and subsequently compromise the integrity of the entire battery back, as well as the safety of those in its surroundings. Replacing the volatile, flammable liquid electrolyte components found in most current lithium ion batteries with a solid polymer electrolyte (SPE) would significantly improve the cell-level safety of batteries; however, poor ionic conductivity and restricted operating temperatures compared to liquid electrolytes have plagued the practical application of SPEs. Rather than competing with the performance of liquid electrolytes directly, our approach to developing SPEs relies on increasing electrolyte functionality through the use of block copolymer architectures.

Block copolymers, wherein two or more chemically dissimilar polymer chains are covalently bound, have a propensity to microphase separate into nanoscale domains that have physical properties similar to those of each of the different polymer chains. For instance, the block copolymer, polystyrene-b-poly(ethylene oxide) (SEO), has often been employed as a solid polymer electrolyte because the nanoscale domains of polystyrene (PS) can provide mechanical reinforcement, while the poly(ethylene oxide) microphases can solvate and conduct lithium ions. Block copolymer electrolytes (BCEs) formed from SEO/salt mixtures result in a material with the bulk mechanical properties of a solid, but with the ion conducting properties of a viscoelastic fluid. The efficacy SEO-based BCEs has been demonstrated; the enhanced mechanical functionality provided by the PS domains resist the propagation of dendritic lithium structures during battery operation, thus enabling the use of a lithium metal anode. The increase in the specific energy of a battery upon replacing a graphite anode with lithium metal can offset the losses in performance due to the poor ion conduction of SPEs. However, BCEs that enable the use of a lithium anode and have improved performance would represent a major breakthrough for the development of high capacity batteries.

The electrochemical performance of BCEs has a complex relationship with the nature of the microphase separated domains, which is not well-understood. The objective of this dissertation is to provide fundamental insight into the nature of microphase separation and self-assembly of block copolymer electrolytes. Specifically, I will focus on how the ion-polymer interactions within a diverse set of BCEs dictate nanostructure. Combining such insight with knowledge of how nanostructure influences ion motion will enable the rational design of new BCEs with enhanced performance and functionality.

In order to facilitate the study of BCE nanostructure, synchrotron-based X-ray scattering techniques were used to study samples over a wide range of length-scales under conditions relevant to the battery environment. The development of the experimental aspects of the X-ray scattering techniques, as well as an improved treatment of scattering data, played a pivotal role in the success of this work. The dissemination of those developments will be the focus of the first section.

The thermodynamic impact of adding salt to a neutral diblock copolymer was studied in a model BCE composed of a low molecular weight SEO diblock copolymer mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), a common salt used in lithium batteries. In neutral block copolymers (BCPs), self-assembly is a thermodynamically driven process governed by a balance between unfavorable monomer contacts and the entropy of mixing. When the enthalpic and entropic contributions to free energy are similar in magnitude, a block copolymer can undergo a thermally reversible phase transition from an ordered to a disordered nanostructure. We used temperature-dependent small angle X-ray scattering (SAXS) to observe this transition in the model SEO/LiTFSI system. Unlike neutral BCPs, which to a first approximation are single component systems, the SEO/LiTFSI system demonstrated the thermodynamically stable coexistence phases of ordered lamellae and disordered polymer over a finite temperature window. Analysis of the lamellar domains revealed an increase in salt concentration during the ODT, indicating local salt partitioning due to the presence of nanostructure.

The performance of BCEs can also be improved by chemically functionalizing one of the polymer blocks by covalently attaching the salt anion. Since the cation is the only mobile species, these materials are coined single-ion conducting block copolymers. Single ion conduction can improve the efficiency of battery operation. In order for cation motion to occur in single-ion conducting block copolymers, it must dissociate from the backbone of the anion-containing polymer block. This direct coupling of ion dissociation (and hence conduction) and nanostructure has interesting implications for BCE performance. (Abstract shortened by ProQuest.)

Indexing (document details)
Advisor: Balsara, Nitash P.
Commitee: Minor, Andrew M., Muller, Susan J.
School: University of California, Berkeley
Department: Chemical Engineering
School Location: United States -- California
Source: DAI-B 78/09(E), Dissertation Abstracts International
Subjects: Polymer chemistry, Chemical engineering, Energy
Keywords: Battery, Block copolymer, Electrolyte, Ion conduction, Self-assembly, X-ray scattering
Publication Number: 10250661
ISBN: 9781369736311
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy