Dissertation/Thesis Abstract

Long-term changes and influences of climate variability on rainfall extremes of different durations
by Metellus, Wilord, M.S., Florida Atlantic University, 2016, 213; 10583108
Abstract (Summary)

The concept of Intensity Duration Frequency (IDF) relationship curve presents crucial design contribution for several decades under the assumption of a stationary climate, the frequency and intensity of extreme rainfall nonetheless seemingly increase worldwide. Based on the research conducted in recent years, the greatest increases are likely to occur in short-duration storms lasting less than a day, potentially leading to an increase in the magnitude and frequency of flash floods. The trend analysis of the precipitation influencing the climate variability and extreme rainfall in the state of Florida is conducted in this study. Since these local changes are potentially or directly related to the surrounding oceanic-atmospheric oscillations, the following oscillations are analyzed or highlighted in this study: Atlantic Multi-Decadal Oscillation (AMO), El Niño Southern Oscillation (ENSO), and Pacific Decadal Oscillations (PDO).

Collected throughout the state of Florida, the precipitation data from rainfall gages are grouped and analyzed based on type of duration such as short-term duration or minute, in hourly and in daily period. To assess statistical associations based on the ranks of the data, the non-parametric tests Kendall’s tau and Spearman’s rho correlation coefficient are used to determine the orientation of the trend and ultimately utilize the testing results to determine the statistical significance of the analyzed data. The outcome of the latter confirms with confidence whether there is an increasing or decreasing trend in precipitation depth in the State of Florida. The main emphasis is on the influence of rainfall extremes of short-term duration over a period of about 50 years. Results from both Spearman and Mann-Kendall tests show that the greatest percentage of increase occurs during the short rainfall duration period. The result highlights a tendency of increasing trends in three different regions, two of which are more into the central and peninsula region of Florida and one in the continental region. Given its topography and the nature of its water surface such as the everglades and the Lake Okeechobee, Florida experience a wide range of weather patterns resulting in frequent flooding during wet season and drought in the dry season.

Indexing (document details)
Advisor: Teegavarapu, Ramesh
Commitee:
School: Florida Atlantic University
School Location: United States -- Florida
Source: MAI 56/03M(E), Masters Abstracts International
Source Type: DISSERTATION
Subjects: Climate Change, Civil engineering, Urban planning
Keywords: Climate change, Climate variability, Long-term change, Precipitation extremes, Rainfall events, Rainfall extremes
Publication Number: 10583108
ISBN: 9781369613469
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest