Dissertation/Thesis Abstract

The path to high Q-factors in superconducting accelerating cavities: Flux expulsion and surface resistance optimization
by Martinello, Martina, Ph.D., Illinois Institute of Technology, 2016, 180; 10245334
Abstract (Summary)

Accelerating cavities are devices resonating in the radio-frequency (RF) range used to accelerate charged particles in accelerators. Superconducting accelerating cavities are made out of niobium and operate at the liquid helium temperature. Even if superconducting, these resonating structures have some RF driven surface resistance that causes power dissipation. In order to decrease as much as possible the power losses, the cavity quality factor must be increased by decreasing the surface resistance.

In this dissertation, the RF surface resistance is analyzed for a large variety of cavities made with different state-of-the-art surface treatments, with the goal of finding the surface treatment capable to return the highest Q-factor values in a cryomodule-like environment. This study analyzes not only the superconducting properties described by the BCS surface resistance, which is the contribution that takes into account dissipation due to quasi-particle excitations, but also the increasing of the surface resistance due to trapped flux. When cavities are cooled down below their critical temperature inside a cryomodule, there is always some remnant magnetic field that may be trapped increasing the global RF surface resistance.

This thesis also analyzes how the fraction of external magnetic field, which is actually trapped in the cavity during the cooldown, can be minimized. This study is performed on an elliptical single-cell horizontally cooled cavity, resembling the geometry of cavities cooled in accelerator cryomodules. The horizontal cooldown study reveals that, as in case of the vertical cooldown, when the cooling is performed fast, large thermal gradients are created along the cavity helping magnetic flux expulsion. However, for this geometry the complete magnetic flux expulsion from the cavity equator is more difficult to achieve. This becomes even more challenging in presence of orthogonal magnetic field, that is easily trapped on top of the cavity equator causing temperature rising.

The physics behind the magnetic flux expulsion is also analyzed, showing that during a fast cooldown the magnetic field structures, called vortices, tend to move in the same direction of the thermal gradient, from the Meissner state region to the mixed state region, minimizing the Gibbs free energy. On the other hand, during a slow cool down, not only the vortices movement is limited by the absence of thermal gradients, but, also, at the end of the superconducting transition, the magnetic field concentrates along randomly distributed normal-conducting region from which it cannot be expelled anymore.

The systematic study of the surface resistance components performed for the different surface treatments, reveals that the BCS surface resistance and the trapped flux surface resistance have opposite trends as a function of the surface impurity content, defined by the mean free path. At medium field value, the BCS surface resistance is minimized for nitrogen-doped cavities and significantly larger for standard niobium cavities. On the other hand, Nitrogen-doped cavities show larger dissipation due to trapped flux. This is consequence of the bell-shaped trend of the trapped flux sensitivity as a function of the mean free path. Such experimental findings allow also a better understanding of the RF dissipation due to trapped flux.

The best compromise between all the surface resistance components, taking into account the possibility of trapping some external magnetic field, is given by light nitrogen-doping treatments. However, the beneficial effects of the nitrogen-doping is completely lost when large amount of magnetic field is trapped during the cooldown, underlying the importance of both cooldown and magnetic field shielding optimization in high quality factors cryomodules.

Indexing (document details)
Advisor: Zasadzinski, John F.
Commitee: Cassel, Kevin, Grassellino, Anna, Segre, Carlo U., Spentzouris, Linda
School: Illinois Institute of Technology
Department: Physics
School Location: United States -- Illinois
Source: DAI-B 78/07(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Physics
Keywords: Accelerating cavities, Flux expulsion, Niobium, SRF, Trapped flux, Vortices
Publication Number: 10245334
ISBN: 9781369653915
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest