Dissertation/Thesis Abstract

Efficient, sound formal verification for analog/mixed-signal circuits
by Fisher, Andrew N., Ph.D., The University of Utah, 2015, 190; 10003590
Abstract (Summary)

The increasing demand for smaller, more efficient circuits has created a need for both digital and analog designs to scale down. Digital technologies have been successful in meeting this challenge, but analog circuits have lagged behind due to smaller transistor sizes having a disproportionate negative affect. Since many applications require small, low-power analog circuits, the trend has been to take advantage of digital's ability to scale by replacing as much of the analog circuitry as possible with digital counterparts. The results are known as \emph{digitally-intensive analog/mixed-signal} (AMS) circuits. Though such circuits have helped the scaling problem, they have further complicated verification. This dissertation improves on techniques for AMS property specifications, as well as, develops sound, efficient extensions to formal AMS verification methods. With the \emph{language for analog/mixed-signal properties} (LAMP), one has a simple intuitive language for specifying AMS properties. LAMP provides a more procedural method for describing properties that is more straightforward than temporal logic-like languages. However, LAMP is still a nascent language and is limited in the types of properties it is capable of describing. This dissertation extends LAMP by adding statements to ignore transient periods and be able to reset the property check when the environment conditions change. After specifying a property, one needs to verify that the circuit satisfies the property. An efficient method for formally verifying AMS circuits is to use the restricted polyhedral class of \emph{zones}. Zones have simple operations for exploring the reachable state space, but they are only applicable to circuit models that utilize constant rates. To extend zones to more general models, this dissertation provides the theory and implementation needed to soundly handle models with ranges of rates. As a second improvement to the state representation, this dissertation describes how octagons can be adapted to model checking AMS circuit models. Though zones have efficient algorithms, it comes at a cost of over-approximating the reachable state space. Octagons have similarly efficient algorithms while adding additional flexibility to reduce the necessary over-approximations. Finally, the full methodology described in this dissertation is demonstrated on two examples. The first example is a switched capacitor integrator that has been studied in the context of transforming the original formal model to use only single rate assignments. Th property of not saturating is written in LAMP, the circuit is learned, and the property is checked against a faulty and correct circuit. In addition, it is shown that the zone extension, and its implementation with octagons, recovers all previous conclusions with the switched capacitor integrator without the need to translate the model. In particular, the method applies generally to all the models produced and does not require the soundness check needed by the translational approach to accept positive verification results. As a second example, the full tool flow is demonstrated on a digital C-element that is driven by a pair of RC networks, creating an AMS circuit. The RC networks are chosen so that the inputs to the C-element are ordered. LAMP is used to codify this behavior and it is verified that the input signals change in the correct order for the provided SPICE simulation traces.

Indexing (document details)
Advisor: Myers, Chris J.
Commitee: Kalla, Priyank, Little, Scott, Mercer, Eric, Stevens, Kenneth
School: The University of Utah
Department: Electrical and Computer Engineering
School Location: United States -- Utah
Source: DAI-B 77/06(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Computer Engineering
Keywords: Analog/mixed signal, Octagons, Reachability analysis, Verification, Zones
Publication Number: 10003590
ISBN: 9781339427065
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest