COMING SOON! PQDT Open is getting a new home!

ProQuest Open Access Dissertations & Theses will remain freely available as part of a new and enhanced search experience at

Questions? Please refer to this FAQ.

Dissertation/Thesis Abstract

In Situ Studies of Limestone Dissolution in a Coastal Submarine Spring
by Schweers, Rachel Marie, M.S., University of South Florida, 2015, 49; 1605125
Abstract (Summary)

Limestone dissolution in karst environments is likely due to geochemistry of the water, the actions of microbial communities, and the effect of water flow. We explored the rate of limestone dissolution and will examine here the microbial communities associated with the limestone. A conduit within the brackish cave, Double Keyhole Spring, on the coast of central west Florida was the site of the experiment. PVC pipes (5cm x 16cm) were filled with crushed limestone that was screened to a 1.9cm – 2.54cm size range. There were three treatments (5 replicates each): Control - sealed autoclaved controls with limestone and conduit water; Low Flow – sealed at one end, with a screen on the other so water contacts the limestone but cannot flow through; High Flow – screen mesh at both ends to allow the flow of conduit water over the limestone in the tube. After 9 months, the samples were retrieved. The Controls showed a loss of 0.33% ± 0.10, Low Flow samples showed a loss of 1.63% ± 0.71, and High Flow samples lost 2.28% ±0.29. Other studies in freshwater conditions found an average mass loss of 2.25% over the same time period under conditions similar to the High Flow sample in this experiment. Q-PCR and LH-PCR were used to estimate microbial density and species richness. The microbial community growing on the limestone samples were found to be significantly different from sediment or water column samples in both diversity and richness. The conclusion of this study is that the archaeal community growing on the limestone is the main biological driver of limestone dissolution in Double Keyhole Spring.

Indexing (document details)
Advisor: Garey, James R.
Commitee: Onac, Bogdan, Scott, Kathleen
School: University of South Florida
Department: Biology (Cell Biology, Microbiology, Molecular Biology)
School Location: United States -- Florida
Source: MAI 55/02M(E), Masters Abstracts International
Subjects: Microbiology, Biogeochemistry, Geochemistry
Keywords: Biochemistry, Carbonate, Karst
Publication Number: 1605125
ISBN: 978-1-339-30838-8
Copyright © 2021 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy