Dissertation/Thesis Abstract

Cloud Dynamics and Microphysics during CAMPS: A Comparison between Airborne and Mountaintop Cloud Microphysics
by David, Robert O., M.S., University of Nevada, Reno, 2015, 128; 1591334
Abstract (Summary)

Orographically-enhanced clouds are essential for global hydrological cycles. To better understand the structure and microphysics of orographically-enhanced clouds, an airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured cloud droplet and ice crystal size distributions, liquid water content, and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and LiDAR were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured temperature and cloud droplet and ice crystal size distributions at SPL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. To assess terrain flow effects on cloud microphysics and structure, vertical profiles of temperature, humidity and wind were obtained from balloon borne soundings and verified with high resolution modeling. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes and previous studies on terrain flow effects. Small ice crystal concentrations were routinely higher at the surface and a relationship between small ice crystal concentrations, large cloud droplet concentrations and temperature was observed, suggesting liquid-dependent ice nucleation near cloud base.

Indexing (document details)
Advisor: Lowenthal, Douglas H., Hallar, Anna G.
Commitee: Kaplan, Michael L., Obrist, Daniel C.
School: University of Nevada, Reno
Department: Atmospheric Sciences
School Location: United States -- Nevada
Source: MAI 54/05M(E), Masters Abstracts International
Subjects: Atmospheric sciences
Keywords: Cloud, Dyanmics, Ice, Microphysics, Nucleation, Orographic
Publication Number: 1591334
ISBN: 9781321826173
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy