Dissertation/Thesis Abstract

Evaluating System Readiness Level Reversal Characteristics Using Incidence Matrices
by London, Mark Alan, Ph.D., The George Washington University, 2015, 129; 3680348
Abstract (Summary)

Contemporary system maturity assessment approaches have failed to provide robust quantitative system evaluations resulting in increased program costs and developmental risks. Standard assessment metrics, such as Technology Readiness Levels (TRL), do not sufficiently evaluate increasingly complex systems. The System Readiness Level (SRL) is a newly developed system development metric that is a mathematical function of TRL and Integration Readiness Level (IRL) values for the components and connections of a particular system. SRL acceptance has been hindered because of concerns over SRL mathematical operations that may lead to inaccurate system readiness assessments. These inaccurate system readiness assessments are called readiness reversals. A new SRL calculation method using incidence matrices, the Incidence Matrix System Readiness Level (IMSRL), was proposed to alleviate these mathematical concerns. The presence of SRL readiness reversal was modeled for four SRL calculation methods across several system configurations. Logistic regression analysis demonstrated that the IMSRL has a decreased presence of readiness reversal than other approaches suggested in the literature. The IMSRL was also analytically evaluated for conformance to five standard SRL mathematical characteristics and a sixth newly proposed SRL property. The improved SRL mathematical characteristics discussed in this research will directly support quantitative analysis of system technological readiness measurements.

Indexing (document details)
Advisor: Holzer, Thomas, Eveleigh, Timothy
Commitee: Mazzuchi, Thomas, Murphree, Edward, Sarkani, Shahram
School: The George Washington University
Department: Systems Engineering
School Location: United States -- District of Columbia
Source: DAI-B 76/06(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Statistics, Electrical engineering, Systems science
Keywords: Graph theory, Incidence matrix, Readiness level, System readiness, Systems engineering
Publication Number: 3680348
ISBN: 9781321523256
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest