Dissertation/Thesis Abstract

Spatial Translation and Scaling Up of LID Practices in Deer Creek Watershed in East Missouri
by Di Vittorio, Damien, M.S., Southern Illinois University at Edwardsville, 2014, 89; 1566440
Abstract (Summary)

This study investigated two important aspects of hydrologic effects of low impact development (LID) practices at the watershed scale by (1) examining the potential benefits of scaling up of LID design, and (2) evaluating downstream effects of LID design and its spatial translation within a watershed. The Personal Computer Storm Water Management Model (PCSWMM) was used to model runoff reduction with the implementation of LID practices in Deer Creek watershed (DCW), Missouri. The model was calibrated from 2003 to 2007 (R2 = 0.58 and NSE = 0.57), and validated from 2008 to 2012 (R2 = 0.64 and NSE = 0.65) for daily direct runoff. Runoff simulated for the study period, 2003 to 2012 (NSE = 0.61; R2 = 0.63), was used as the baseline for comparison to LID scenarios. Using 1958 areal imagery to assign land cover, a predevelopment scenario was constructed and simulated to assess LID scenarios' ability to restore predevelopment hydrologic conditions. The baseline and all LID scenarios were simulated using 2006 National Land Cover Dataset.

The watershed was divided in 117 subcatchments, which were clustered in six groups of approximately equal areas and two scaling concepts consisting of incremental scaling and spatial scaling were modelled. Incremental scaling was investigated using three LID practices (rain barrel, porous pavement, and rain garden). Each LID practice was simulated at four implementation levels (25%, 50%, 75%, and 100%) in all subcatchments for the study period (2003 to 2012). Results showed an increased runoff reduction, ranging from 3% to 31%, with increased implementation level. Spatial scaling was investigated by increasing the spatial extent of LID practices using the subcatchment groups and all three LID practices (combined) implemented at 50% level. Results indicated that as the spatial extent of LID practices increased the runoff reduction at the outlet also increased, ranging from 3% to 19%. Spatial variability of LID implementation was examined by normalizing LID treated area to impervious area for each subcatchment group. The normalized LID implementation levels for each group revealed a reduction in runoff at the outlet of the watershed, ranging from 0.6% to 3.7%. This study showed that over a long-term period LID practices could restore pre-development hydrologic conditions. The optimal location for LID practice implementation within the study area was found to be near the outlet; however, these results cannot be generalized for all watersheds.

Indexing (document details)
Advisor: Ahiablame, Laurent
Commitee: Morgan, Susan, Zhou, Jianpeng
School: Southern Illinois University at Edwardsville
Department: Civil Engineering
School Location: United States -- Illinois
Source: MAI 53/06M(E), Masters Abstracts International
Source Type: DISSERTATION
Subjects: Hydrologic sciences, Water Resource Management, Remote sensing
Keywords: Low impact development, Modeling, PCSWMM, Storm water management model, Stormwater, Urban stormwater
Publication Number: 1566440
ISBN: 9781321241952
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest