Dissertation/Thesis Abstract

Cosmogenic beryllium cycling in a natural forest setting
by Conyers, Grace, M.S., Purdue University, 2014, 97; 1564825
Abstract (Summary)

10Bemet, or cosmogenic beryllium, has a long half-life of 1.4 million years and quick adsorption on soil particles, which may make it ideal for dating soil erosion in historical context. However, there are questions on about the fundamental assumptions of the retentivity of 10Bemet. This manuscript explores these assumptions and the context of nutrient cycling in a natural forest setting.

To see if 10Bemet was being cycled through the trees, and at what rate, we looked at the[10Bemet ] in the soil, 4 species of trees, and their leaves. The isotopic ratio 10Be/9Be in all four tree species was comparable to the soil on which they grow, ranging from 6-8 x 10 -9. However, there was one exception with hickory (Carya spp.) which strongly bioaccumulate beryllium with an average of 0.38 ppm dry weight in the wood. Abscised hickory leaves have a higher [Be] of 2.0 ppm, over 10 times higher than in the soil.

Using standard allometric equations relating tree biomass to trunk diameter, and assuming that belowground biomass has the same [Be] as aboveground, we calculate that hickory trees at our site contain approximately 1% of the total 10Bemet under their canopy and that ~10% of this Be is cycled annually by leaf abscission. It is not clear at this point what fraction of litterfall Be is recycled into the plant, returned to the soil, or carried to groundwater as organic chelates.

Hickory trees occupy an average of ~10% of the oak-hickory forest area. Assuming that trees are randomly distributed, that litterfall Be is returned to the soil, and maintaining a constant 10Bemet budget over time for simplicity, then more than half of all 10Be met in the forest soil will have passed through a hickory tree over the past 10 ky. Fully 90% of all 10Bemet will pass through a hickory tree over a period of ~25 ky. It is clear that hickory trees can transport a sizable fraction of the total 10Bemet in their nutrient cycle, and that they may be responsible for landscape-scale Be mobility.

Indexing (document details)
Advisor: Granger, Darryl
Commitee: Filley, Timothy, Shieh, Yuch-Ning
School: Purdue University
Department: Earth, Atmospheric and Planetary Sciences
School Location: United States -- Indiana
Source: MAI 53/06M(E), Masters Abstracts International
Subjects: Soil sciences, Geomorphology, Atmospheric sciences, Geochemistry
Keywords: Cosmogenic beryllium, Meteoric beryllium, Nutrient cycle, Soil erosion
Publication Number: 1564825
ISBN: 9781321185751
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy