Dissertation/Thesis Abstract

Engineering interfacial properties of organic semiconductors through soft-contact lamination and surface functionalization
by Shu, Andrew Leo, Ph.D., Princeton University, 2014, 165; 3627154
Abstract (Summary)

Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements.

Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers.

We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of phenylphosphonic acid SAM molecules with various molecular dipoles is then used to functionalize the surface of an organic film and found to modify the work function depending on the molecular dipole across the molecule. This in turn is found to modify the energy level alignment between the underlying organic film with an organic film deposited on top.

Indexing (document details)
Advisor: Kahn, Antoine
Commitee: Loo, Yueh-Lin, Rand, Barry P., Schwartz, Jeffrey, Wagner, Sigurd
School: Princeton University
Department: Electrical Engineering
School Location: United States -- New Jersey
Source: DAI-B 75/10(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Electrical engineering, Materials science
Keywords: Interfaces, Organic electronics, Polymers, Surface chemistry
Publication Number: 3627154
ISBN: 9781321022827
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest