Dissertation/Thesis Abstract

Characterization and Fabrication of High k dielectric-High Mobility Channel Transistors
by Sun, Xiao, Ph.D., Yale University, 2013, 168; 3578458
Abstract (Summary)

As the conventional scaling of Si-based MOSFETs would bring negligible or even negative merits for IC's beyond the 7-nm CMOS technology node, many perceive the use of high-mobility channels to be one of the most likely principle changes, in order to achieve higher performance and lower power. However, interface and oxide traps have become a major obstacle for high-mobility semiconductors (such as Ge, InGaAs, GaSb, GaN...) to replace Si CMOS technology.

In this thesis, the distinct properties of the traps in the high-k dielectric/high-mobility substrate system is discussed, as well as the challenges to characterize and passivate them. By modifying certain conventional gate admittance methods, both the fast and slow traps in Ge MOS gate stacks is investigated. In addition, a novel ac-transconductance method originated at Yale is introduced and demonstrated with several advanced transistors provided by collaborating groups, such as ultra-thin-body & box SO1 MOSFETs (CEA-LETI), InGaAs MOSFETs (IMEC, UT Austin, Purdue), and GaN MOS-HEMT (MIT).

By use of the aforementioned characterization techniques, several effective passivation techniques on high mobility substrates (Ge, InGaAs, GaSb, GeSn, etc.) are evaluated, including a novel Ba sub-monolayer passivation of Ge surface. The key factors that need to be considered in passivating high mobility substrates are revealed.

The techniques that we have established for characterizing traps in advanced field-effect transistors, as well as the knowledge gained about these traps by the use of these techniques, have been applied to the study of ionizing radiation effects in high-mobility-channel transistors, because it is very important to understand such effects as these devices are likely to be exposed to radiation-harsh environments, such as in outer space, nuclear plants, and during X-ray or UHV lithography. In this thesis, the total ionizing dose (TD) radiation effects of InGaAs-based MOSFETs and GaN-based MOS-HEMT are studied, and the results help to reveal the underlying mechanisms and inspire ideas for minimizing the TID radiation effects.

Indexing (document details)
Advisor: Ma, T.P.
Commitee:
School: Yale University
School Location: United States -- Connecticut
Source: DAI-B 75/05(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Electrical engineering, Nanotechnology, Materials science
Keywords: Gemanium, HEMT, III-V, Interface trap, MOSFET, Semiconductor device
Publication Number: 3578458
ISBN: 978-1-303-71713-0
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest