Dissertation/Thesis Abstract

MS/MS analysis and automated tool development for protein post-translational modifications
by Woodin, Carrie L., Ph.D., University of Kansas, 2013, 171; 3591745
Abstract (Summary)

Protein post-translational modifications (PTMs) are important for a variety of reasons. PTMs confer the final protein product and biological functionality onto a nascent protein chain. Two common PTMs are glycosylation and disulfide bond formation. Both glycosylation and disulfide bond formation contribute to a variety of biological processes, including protein folding and stabilization. Mass spectrometry (MS) has shown to be an essential technique to study PTMs, especially when tandem mass spectrometry (MS/MS) experiments are performed. In the characterization of PTMs using MS/MS, different fragmentation techniques are often used. Regardless of the dissociation method that is employed, MS/MS data interpretation is a tedious and lengthy process. To render this analysis more efficient, the use of automated tools is necessary.

In this work, collision induced dissociation (CID) MS/MS experiments were carried out in order to create a set of fragmentation rules applicable to any N-linked glycopeptide. These rules were then used to develop an algorithm to power publicly available software that accurately determines glycopeptide composition from MS/MS data. This program greatly reduces the time it takes researchers to manually assign the identity of an N-linked glycopeptide to an acquired CID spectrum. In addition, electron transfer dissociation (ETD) experiments were performed in order to devise a computational approach that works to determine precursor charge state directly from MS/MS data of peptides containing disulfide bonds. Lastly, alternate fragmentation patterns found to be detected in glycopeptides containing labile monosaccharide residues such as sialic acid are discussed. These patterns, along with other trends noticed after extensive analysis of N-linked glycopeptide CID data, were then used to propose future updates to the GPG analysis tool.

Indexing (document details)
Advisor: Desaire, Heather
Commitee: Jackson, Timothy, Johnson, Michael, Lunte, Susan, Scott, Emily
School: University of Kansas
Department: Chemistry
School Location: United States -- Kansas
Source: DAI-B 74/12(E), Dissertation Abstracts International
Subjects: Chemistry, Analytical chemistry, Bioinformatics
Keywords: Automated ms/ms analysis, Disulfide bonds, Glycosylation, Post-translational modifications
Publication Number: 3591745
ISBN: 9781303324567
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy