Dissertation/Thesis Abstract

Error Floors of LDPC Codes and Related Topics
by Butler, Brian K., Ph.D., University of California, San Diego, 2013, 180; 3567517
Abstract (Summary)

Since their rediscovery in the late 1990s, low-density parity-check (LDPC) codes have rapidly become one the most important classes of error correcting codes. LDPC codes have a graphical description and are generally decoded iteratively. The graph of an iteratively decoded code’s error rate performance versus the channel quality is typically divided into two regions. The error floor region appears at higher channel quality and is characterized by a more gradual decrease in error rate as channel quality improves. For iterative decoders the error floor is apparently determined by small structures within the code that are specific to the selected graphical description of the code and subtle details of the decoding algorithm.

This thesis addresses several issues of LDPC error floors in the additive white Gaussian noise channel. First, we find the source of several well publicized error floors to be numerical issues within the message-passing decoder. We propose numerical improvements to several decoding formulations which substantially lower error floors.

Next, we examine and refine error-floor prediction models. A time-variant linear state-space model is presented and analyzed. Graph theory is applied to analyze the small error-prone structures within the code. While we find our techniques encounter considerable problems in determining the error floors for iterative decoders with unrestricted dynamic range, their predictions are quite accurate when significant range restrictions are present.

The final issue of LDPC error floors which we address relates to the minimum distance of quasi-cyclic (QC) LDPC codes. We derive improved minimum distance upper bounds for codes which are punctured and codes which contain a significant number of zeros in their protomatrices. These bound are then applied to a family of protograph-based LDPC codes standardized for use in deep-space communications. In the case of the rate-1/2 code, our upper bounds demonstrate that the previously promulgated ensemble lower bounds do not apply to QC constructions at block lengths beyond 4400 bits.

The last part of this dissertation is a fairly separate piece of work on bounding the spectral radius of a large class of nonnegative matrices. We apply these bounds to digraphs and derive several associated equality conditions.

Indexing (document details)
Advisor: Siegel, Paul H.
Commitee: Javidi, Tara, Micciancio, Daniele, Milstein, Laurence B., Vardy, Alexander
School: University of California, San Diego
Department: Electrical Engineering (Communication Theory and Systems)
School Location: United States -- California
Source: DAI-B 74/10(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Applied Mathematics, Electrical engineering
Keywords: Belief propagation, Digraphs, Error correcting codes, Error floors, Quasi-cyclic codes, Sum-product algorithm
Publication Number: 3567517
ISBN: 978-1-303-19334-7
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest