Dissertation/Thesis Abstract

Statistical Analysis of the Uncertainty in Pre-Flight Aerodynamic Database of a Hypersonic Vehicle
by Huh, Lynn, Ph.D., North Carolina State University, 2012, 102; 3538541
Abstract (Summary)

The objective of the present research was to develop a new method to derive the aerodynamic coefficients and the associated uncertainties for flight vehicles via post- flight inertial navigation analysis using data from the inertial measurement unit. Statistical estimates of vehicle state and aerodynamic coefficients are derived using Monte Carlo simulation. Trajectory reconstruction using the inertial navigation system (INS) is a simple and well used method. However, deriving realistic uncertainties in the reconstructed state and any associated parameters is not so straight forward. Extended Kalman filters, batch minimum variance estimation and other approaches have been used. However, these methods generally depend on assumed physical models, assumed statistical distributions (usually Gaussian) or have convergence issues for non-linear problems. The approach here assumes no physical models, is applicable to any statistical distribution, and does not have any convergence issues.

The new approach obtains the statistics directly from a sufficient number of Monte Carlo samples using only the generally well known gyro and accelerometer specifications and could be applied to the systems of non-linear form and non-Gaussian distribution. When redundant data are available, the set of Monte Carlo simulations are constrained to satisfy the redundant data within the uncertainties specified for the additional data.

The proposed method was applied to validate the uncertainty in the pre-flight aerodynamic database of the X-43A Hyper-X research vehicle. In addition to gyro and acceleration data, the actual flight data include redundant measurements of position and velocity from the global positioning system (GPS). The criteria derived from the blend of the GPS and INS accuracy was used to select valid trajectories for statistical analysis. The aerodynamic coefficients were derived from the selected trajectories by either direct extraction method based on the equations in dynamics, or by the inquiry of the pre-flight aerodynamic database.

After the application of the proposed method to the case of the X-43A Hyper-X research vehicle, it was found that 1) there were consistent differences in the aerodynamic coefficients from the pre-flight aerodynamic database and post-flight analysis, 2) the pre-flight estimation of the pitching moment coefficients was significantly different from the post-flight analysis, 3) the type of distribution of the states from the Monte Carlo simulation were affected by that of the perturbation parameters, 4) the uncertainties in the pre-flight model were overestimated, 5) the range where the aerodynamic coefficients from the pre-flight aerodynamic database and post-flight analysis are in closest agreement is between Mach *.* and *.* and more data points may be needed between Mach * and ** in the pre-flight aerodynamic database, 6) selection criterion for valid trajectories from the Monte Carlo simulations was mostly driven by the horizontal velocity error, 7) the selection criterion must be based on reasonable model to ensure the validity of the statistics from the proposed method, and 8) the results from the proposed method applied to the two different flights with the identical geometry and similar flight profile were consistent.

Indexing (document details)
Advisor: Tolson, Robert
Commitee: DeJarnette, Fred, Mazzoleni, Andre, Silverberg, Lawrence
School: North Carolina State University
Department: Aerospace Engineering
School Location: United States -- North Carolina
Source: DAI-B 74/07(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Aerospace engineering
Keywords: Aerodynamic database, Hypersonic vehicle, Pre-flight, Uncertainty
Publication Number: 3538541
ISBN: 9781303015663
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest