Dissertation/Thesis Abstract

Synthesis of cerium rich intermetallics using molten metal eutectics
by Tucker, Patricia Christine, Ph.D., The Florida State University, 2012, 144; 3551204
Abstract (Summary)

Metal eutectic fluxes are useful for exploratory synthesis of new intermetallic phases. In this work the use of cerium/transition metal eutectics such as: Ce/Co, Ce/Ni, and Ce/Fe have yielded many new synthetically and magnetically complex phases. Structural units that were previously observed in phases grown in La/Ni eutectic reactions have also been observed in new structures and analogs grown from cerium/transition metal eutectics. These structural units include a main group element coordinated by 9 rare-earth atoms (such as the Al@Ce9 clusters seen in Ce31.0(2)Fe11.8(5)Al6.5(6) B13C4), trigonal planar FeC3 units (also seen in Ce31.0(2)Fe11.8(5)Al6.5(6)B 13C4), iron clusters capped by light elements (Fe4C 6 frustrated tetrahedral in Ce21Fe8M7C 14, and larger Fe clusters in Ce33Fe14B25 C34). Variants of these building blocks were observed in Ce10Co2B7C16 with square Co units and chains of B and C connected to them, Fe2C8 units observed in Ce7Fe2C9, and FeC4 observed in Ce4FeGa0.85Al0.15C4 and Ce4FeAlC4.

Two new phases were grown from Ce/Fe eutectic, Ce33Fe 14B25C34 and Ce33Fe13B 18C34 which exhibits very similar structures, but significantly different magnetic behavior. Structurally these two phases are similar. Both crystallize in the Im-3m space group, but differ by the centering of the Fe clusters. Ce33Fe14B25C34 contains Fe clusters centered by B atoms and Al doped on the Fe2 site. In Ce33Fe13B18C34, the Fe cluster is a perfect cuboctahedron. Ce33Fe14B25 C34 exhibits mixed valent behavior of cerium at 75K and no magnetic moment on iron, where-as Ce33Fe13B18C 34 exhibits tetravalent cerium and its iron clusters undergo a ferromagnetic transition at 180K.

Another borocarbide, Ce10Co2B7C 16 was synthesized from Ce/Co eutectic flux. This structure features squares of Co surrounded by chains of C and B and a sea of cerium atoms. Temperature dependent magnetic susceptibility measurements at 1 Tesla were fit to a modified Curie-Weiss law and a moment per Ce was calculated to be 2.70µB. Field dependent data were collected at 200K and 2K. Paramagnetic behavior dominated at 200K and at 2K, ferromagnetic behavior was observed. XPS measurements were used to confirm that Ce is in the 3+ oxidation state.

Intermetallics containing different Fe clusters (Y5Mg 5Fe4AlSi, La6Fe10Al3Si, Ce21Fe8Al7-xSixC12, and Ce33Fe13.1Al1.1B24.8C 34) were explored as potential catalysts for conversion of methane to Carbon Nanotubes (CNT). Different growth temperatures were explored. At 690ºC, Ce33Fe14B25C34 catalyzed the growth of single walled carbon nanotubes, Ce21Fe8Al7-x SixC12 multiwalled carbon nanotubes, and all other structures did not catalyze the growth of CNT.

Indexing (document details)
Advisor: Latturner, Susan E.
Commitee: Brooks, James, Dalal, Naresh, Shatruk, Michael
School: The Florida State University
Department: Chemistry and Biochemistry
School Location: United States -- Florida
Source: DAI-B 74/06(E), Dissertation Abstracts International
Source Type: DISSERTATION
Subjects: Inorganic chemistry, Solid State Physics
Keywords: Cerium, Eutectics, Intermetallics, Molten metals
Publication Number: 3551204
ISBN: 9781267887191
Copyright © 2019 ProQuest LLC. All rights reserved. Terms and Conditions Privacy Policy Cookie Policy
ProQuest